[1]胡盈绮,邓科,殷勤业.采用前向空间平滑分组的混合信号波达方向估计算法[J].西安交通大学学报,2020,54(09):164-172.[doi:10.7652/xjtuxb202009019]
 HU Yingqi,DENG Ke,YIN Qinye.Direction of Arrival Estimation Method for Mixed Signals by Forward Spatial Smooth Grouping[J].Journal of Xi'an Jiaotong University,2020,54(09):164-172.[doi:10.7652/xjtuxb202009019]
点击复制

采用前向空间平滑分组的混合信号波达方向估计算法
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第09期
页码:
164-172
栏目:
出版日期:
2020-09-10

文章信息/Info

Title:
Direction of Arrival Estimation Method for Mixed Signals by Forward Spatial Smooth Grouping
文章编号:
0253-987X(2020)09-0164-09
作者:
胡盈绮 邓科 殷勤业
西安交通大学电子与信息学部, 710049, 西安
Author(s):
HU Yingqi DENG Ke YIN Qinye
Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
关键词:
波达方向估计 混合信号 平滑算法 多径传播 旋转不变性子空间类算法
Keywords:
direction of arrival estimation mixed signals smoothing algorithm multi-path propagation estimating signal parameter via rotational invariance technique
分类号:
TN911
DOI:
10.7652/xjtuxb202009019
文献标志码:
A
摘要:
针对混合信号在估计其波达方向时阵列孔径和信噪比损失严重的问题,提出了一种基于对称均匀线阵的波达方向估计算法。对于独立信号,利用旋转不变性子空间类算法估计出其波达方向; 对于多径传播引起的多组相干信号,利用矩阵的差分以及斜投影分组估计出其波达方向。这种利用矩阵差分的算法不仅消除了独立信号对相干信源的影响,而且相比前向空间平滑算法减少了斜投影和空间平滑的次数,降低了阵列孔径和信噪比的损失。该算法还可以与多种平滑算法相结合,降低对阵元数的要求并提高仿真性能。在估计相干信号的波达方向时,利用旋转不变性子空间类算法思想代替多信号分类算法,避免了谱峰搜索,降低了运算时间。仿真结果表明:存在5个相干信源时,在-10 dB的低信噪比的情况下,所提算法仅需7个阵元就可获得误差较低的估计结果,而且与多信号分类算法相比节约了大量运行时间。
Abstract:
Aiming at the problem of serious losses of array aperture and signal-to-noise ratio as estimating the direction of arrivals of mixed signals, a direction of arrivals estimation algorithm based on symmetric uniform linear array is proposed for hybrid independent and coherent sources. For independent sources, the estimating signal parameter via rotational invariance technique is exploited directly to estimate their direction of arrivals, while for multi-group coherent signals caused by multi-path propagation, the direction of arrivals is estimated by exploiting the difference of the matrices and the oblique projection. This algorithm using matrix difference eliminates the effect of independent sources on the coherent source, reduces the number of oblique projection and forward spatial smoothing, and lowers the losses of array aperture and signal-to-noise ratio. The proposed smoothing method can also be combined with various smoothing algorithms to reduce the number of array elements and improve the simulation performance. During estimating the direction of arrivals of coherent sources, the estimating signal parameter via rotational invariance technique is used instead of the multiple signals classification algorithm to estimate the direction of arrivals, which avoids the peak search and greatly reduces the computation time. Simulation shows that in the case of 5 coherent sources with low signal-to-noise ratio of -10 dB, this algorithm only needs 7 array elements to obtain the estimation result with very low error, and spends much shorter time compared with the multiple signals classification algorithm.

参考文献/References:

[1] SCHMIDT R. Multiple emitter location and signal parameter estimation [J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280.
[2] 张贤达. 矩阵分析与应用 [M]. 北京: 清华大学出版社, 2004: 521-525.
[3] SHAN T J, WAX M, KAILATH T. On spatial smoothing for direction-of-arrival estimation of coherent signals [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(4): 806-811.
[4] PILLAI S U, KWON B H. Forward/backward spatial smoothing techniques for coherent signal identification [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(1): 8-15.
[5] LI S, LIN B. On spatial smoothing for direction-of-arrival estimation of coherent signals in impulsive noise [C]∥Proceedings of 2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference(IAEAC). Piscataway, NJ, USA: IEEE, 2015: 339-343.
[6] ZHENG Z, HUANG Y X, WANG W Q, et al. Spatial smoothing PAST algorithm for DOA tracking using difference coarray [J]. IEEE Signal Processing Letters, 2019, 26(11): 1623-1627.
[7] COVENTRY W, CLEMENTE C, SORAGHAN J. Enhancing polynomial MUSIC algorithm for coherent broadband sources through spatial smoothing [C]∥2017 25th European Signal Processing Conference(EUSIPCO). Piscataway, NJ, USA: IEEE, 2017: 2448-2452.
[8] 林彬. 基于改进空间平滑算法的复杂多信号测向技术研究 [J]. 舰船电子工程, 2018, 38(10): 49-52, 141.
LIN Bin. Research on direction-finding technique for complicated multiple-signal based on improved spatial smoothing algorithm [J]. Ship Electronic Engineering, 2018, 38(10): 49-52, 141.
[9] YE Z F, XU X. DOA estimation by exploiting the symmetric configuration of uniform linear array [J]. IEEE Transactions on Antennas and Propagation, 2007, 55(12): 3716-3720.
[10] XU X D, YE Z F, ZHANG Y, et al. A deflation approach to direction of arrival estimation for symmetric uniform linear array [J]. IEEE Antennas and Wireless Propagation Letters, 2006, 5(1): 486-489.
[11] QI C Y, WANG Y L, ZHANG Y S, et al. Spatial difference smoothing for DOA estimation of coherent signals [J]. IEEE Signal Processing Letters, 2005, 12(11): 800-802.
[12] WEI J Q, XU X, LUO D W, et al. Sequential DOA estimation method for multi-group coherent signals [J]. Signal Processing, 2017, 130: 169-174.
[13] BEHRENS R T, SCHARF L L. Signal processing applications of oblique projection operators [J]. IEEE Transactions on Signal Processing, 1994, 42(6): 1413-1424.
[14] 徐伟, 臧旭, 王长宇. 基于斜投影的DOA估计和盲信号识别协同算法 [J]. 现代雷达, 2018, 40(11): 77-80, 85.
XU Wei, ZANG Xu, WANG Changyu. Oblique projection based collaborative algorithm for DOA estimation and blind signal identification [J]. Modern Radar, 2018, 40(11): 77-80, 85.
[15] 叶中付. 一种快速TLS-ESPRIT算法 [J]. 信号处理, 1998, 14(2): 146-149, 166.
YE Zhongfu. A fast TLS-ESPRIT algorithm [J]. Signal Processing, 1998, 14(2): 146-149, 166.
[16] 郑棋, 肖曼琳, 施华杰, 等. 加权空间平滑TLS-ESPRIT算法性能分析 [J]. 无线电通信技术, 2019, 45(5): 536-539.
ZHENG Qi, XIAO Manlin, SHI Huajie, et al. Performance analysis of weighted spatial smoothing TLS-ESPRIT algorithm [J]. Radio Communications Technology, 2019, 45(5): 536-539.
[17] 司元雷. 均匀阵列下TLS-ESPRIT改进算法的研究 [J]. 无线通信技术, 2015, 24(3): 30-33.
SI Yuanlei. Improved TLS-ESPRIT algorithm research for uniform line array [J]. Wireless Communication Technology, 2015, 24(3): 30-33.
[18] 孙建设, 张玉, 邓小波. 基于循环累积量的TLS-ESPRIT测向算法 [J]. 无线电工程, 2014, 44(2): 42-45.
SUN Jianshe, ZHANG Yu, DENG Xiaobo. A TLS-ESPRIT algorithm based on cyclic cumulant [J]. Radio Engineering, 2014, 44(2): 42-45.
[19] 黄宇, 柏正尧, 黄振, 等. 采用小波分析和TLS-ESPRIT的DOA估计算法 [J]. 计算机仿真, 2015, 32(5): 209-212.
HUANG Yu, BAI Zhengyao, HUANG Zhen, et al. Joint DOA estimation algorithm using wavelet analysis and TLS-ESPRIT [J]. Computer Simulation, 2015, 32(5): 209-212.
[20] GAN L, LUO X Y. Direction-of-arrival estimation for uncorrelated and coherent signals in the presence of multipath propagation [J]. IET Microwaves Antennas & Propagation, 2013, 7(9): 746-753.

备注/Memo

备注/Memo:
收稿日期: 2019-12-10。作者简介: 胡盈绮(1995—),女,硕士生; 邓科(通信作者),男,副教授,博士生导师。基金项目: 国家自然科学基金资助项目(61671364)。
更新日期/Last Update: 2020-09-10