[1]赵诗琪,吴旭洲,张旭,等.利用表面肌电进行手势自动识别[J].西安交通大学学报,2020,54(09):149-156.[doi:10.7652/xjtuxb202009017]
 ZHAO Shiqi,WU Xuzhou,ZHANG Xu,et al.Automatic Gesture Recognition with Surface Electromyography Signal[J].Journal of Xi'an Jiaotong University,2020,54(09):149-156.[doi:10.7652/xjtuxb202009017]
点击复制

利用表面肌电进行手势自动识别
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第09期
页码:
149-156
栏目:
出版日期:
2020-09-10

文章信息/Info

Title:
Automatic Gesture Recognition with Surface Electromyography Signal
文章编号:
0253-987X(2020)09-0149-08
作者:
赵诗琪123 吴旭洲123 张旭123 李柄澄123 毛菁菁123 徐进123
1.西安交通大学生命科学与技术学院, 710049, 西安; 2.西安交通大学生物医学信息工程教育部重点实验室, 710049, 西安; 3.国家医疗保健器具工程技术研究中心, 510500, 广州
Author(s):
ZHAO Shiqi123 WU Xuzhou123 ZHANG Xu123 LI Bingcheng123 MAO Jingjing123 XU Jin123
1. School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; 2. Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China; 3. National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China
关键词:
表面肌电 特征提取 特征降维 机器学习 Fisher Score
Keywords:
surface electromyography feature extraction feature reduction machine learning Fisher Score
分类号:
R318.04
DOI:
10.7652/xjtuxb202009017
文献标志码:
A
摘要:
针对手势自动识别研究中提高正确率和降低训练时间两者需要同时兼顾的问题,提出了一种基于Fisher Score(FS)特征降维方法与机器学习相结合的新的手势识别模型。提取4通道表面肌电信号的时域、频域、时-频域和非线性特征,构成特征集; 采用FS方法和主成分分析(PCA)方法分别进行特征降维,采用线性判别分析(LDA)和支持向量机(SVM)分别作为分类器; 通过两种特征降维方法与两种分类器的不同组合构建不同的手势识别模型,并对分类模型的性能进行对比研究。实验结果表明,特征降维方法与分类器的组合能显著提高分类器的正确率、降低训练时间。与PCA方法相比,FS方法是一种实现简便、效果理想的特征降维方法:与SVM组合的分类模型获得最高分类正确率99.92%; 与LDA组合的分类模型不仅获得99.24%的分类正确率,而且花费最短的训练时间1.44 ms,该模型可为手势的实时自动识别提供理想的方法和途径。
Abstract:
For the aim of improving accuracy and reducing training time in automatic gesture recognition, a new gesture recognition model based on Fisher Score(FS)feature reduction combined with machine learning method is proposed. Firstly, the feature set is extracted from four-channel surface electromyography signals, involving the features of time domain, frequency domain, time-frequency domain and nonlinear dynamics. Then, FS and principal component analysis(PCA)are used for feature reduction respectively, and linear discriminant analysis(LDA)and support vector machine(SVM)are adopted as classifiers. Finally, different gesture recognition models are constructed by the two classifiers with and without two feature reduction methods, and their classification performance is compared. Experimental results demonstrate that the feature reduction method can help classifier improve accuracy and reduce training time significantly. Furthermore, compared with PCA, FS is a simple and effective feature reduction method: the combination of SVM and FS can achieve the highest classification accuracy of 99.92%; the combination of LDA and FS obtains the accuracy of 99.24% and takes the shortest training time of 1.44 ms, which suggests an ideal method for real-time automatic gesture recognition.

参考文献/References:

[1] OMARI F A, HUI Jiang, MEI Congli, et al. Pattern recognition of eight hand motions using feature extraction of forearm EMG signal [J]. Proceedings of the National Academy of Sciences India: Section A Physical Sciences, 2014, 84(3): 473-480.
[2] PHUKPATTARANONT P, THONGPANJA S, ANAM K, et al. Evaluation of feature extraction techniques and classifiers for finger movement recognition using surface electromyography signal [J]. Medical and Biological Engineering and Computing, 2018, 56(12): 2259-2271.
[3] 郑鑫. 基于表面肌电信号的手臂运动模式识别方法研究 [D]. 长春: 吉林大学, 2012: 1-4.
[4] LEóN M, GUTIéRREZ J M, LEIJA L, et al. EMG pattern recognition using support vector machines classifier for myoelectric control purposes [C]∥Proceedings of the 2011 Pan American Health Care Exchanges. Piscataway, NJ, USA: IEEE, 2011: 175-178.
[5] OSKOEI M A, HU Huosheng. Support vector machine-based classification scheme for myoelectric control applied to upper limb [J]. IEEE Transactions on Biomedical Engineering, 2008, 55(8): 1956-1965.
[6] 张志勇. 肌电信号采集与肌电假肢控制的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2010: 1-3.
[7] PURUSHOTHAMAN G, VIKAS R. Identification of a feature selection based pattern recognition scheme for finger movement recognition from multichannel EMG signals [J]. Australasian Physical and Engineering Sciences in Medicine, 2018, 41(2): 549-559.
[8] NAIK G R, SELVAN S E, GOBBO M, et al. Principal component analysis applied to surface electromyography: a comprehensive review [J]. IEEE Access, 2016, 4: 4025-4037.
[9] GU Quanquan, LI Zhenhui, HAN Jiawei. Generalized Fisher score for feature selection [C]∥Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence. New York, USA: ACM, 2011: 266-273.
[10]SEN B, PEKER M, ?AVUSOGLU A, et al. A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms [J]. Journal of Medical Systems, 2014, 38(3): 18.
[11] GUO Shuxiang, PANG Muye, GAO Baofeng, et al. Comparison of sEMG-based feature extraction and motion classification methods for upper-limb movement [J]. Sensors, 2015, 15(4): 9022-9038.
[12] SOLNIK S, RIDER P, STEINWEG K, et al. Teager-Kaiser energy operator signal conditioning improves EMG onset detection [J]. European Journal of Applied Physiology, 2010, 110(3): 489-498.
[13] ZARDOSHTI-KERMANI M, WHEELER B C, BADIE K, et al. EMG feature evaluation for movement control of upper extremity prostheses [J]. IEEE Transactions on Rehabilitation Engineering, 1995, 3(4): 324-333.
[14] STULEN F B, DELUCA C J. Frequency parameters of the myoelectric signal as a measure of muscle conduction velocity [J]. IEEE Transactions on Biomedical Engineering, 1981, 28(7): 515-523.
[15] HU Xiao, WANG Zhizhong, REN Xiaomei. Classification of surface EMG signal using relative wavelet packet energy [J]. Computer Methods and Programs in Biomedicine, 2005, 79(3): 189-195.
[16] FLANDERS M. Choosing a wavelet for single-trial EMG [J]. Journal of Neuroscience Methods, 2002, 116(2): 165-177.
[17] KOSMIDOU V E, HADJILEONTIADIS L I. Using sample entropy for automated sign language recognition on sEMG and accelerometer data [J]. Medical and Biological Engineering and Computing, 2010, 48(3): 255-267.
[18] CHAKRABORTY M, PARBAT D. Fractals, chaos and entropy analysis to obtain parametric features of surface electromyography signals during dynamic contraction of biceps muscles under varying load [C]∥Proceedings of the 2017 2nd International Conference for Convergence in Technology. Piscataway, NJ, USA: IEEE, 2017: 222-229.
[19] GITTER J A, CZERNIECKI M J. Fractal analysis of the electromyographic interference pattern [J]. Journal of Neuroscience Methods, 1995, 58(1): 103-108.
[20] VENUGOPAL V, SUNDARAM S. An online writer identification system using regression-based feature normalization and codebook descriptors [J]. Expert Systems with Applications, 2017, 72: 196-206.
[21] NAIK G R, SELVAN S E, ARJUNAN S P, et al. An ICA-EBM-based sEMG classifier for recognizing lower limb movements in individuals with and without knee pathology [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(3): 675-686.
[22] HSU C W, LIN C J. A comparison of methods for multiclass support vector machines [J]. IEEE Transactions on Neural Networks, 2002, 13(2): 415-425.
[23] CHANG C C, LIN C J. LIBSVM: a library for support vector machines [J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 27.
[24] SHI Wanting, LYU Z J, TANG S T, et al. A bionic hand controlled by hand gesture recognition based on surface EMG signals: a preliminary study [J]. Biocybernetics and Biomedical Engineering, 2018, 38(1): 126-135.
[25] LIANG Shili, WANG Liangliang, ZHANG Ling, et al. Research on recognition of nine kinds of fine gestures based on adaptive AdaBoost algorithm and multi-feature combination [J]. IEEE Access, 2019, 7: 3235-3246.

相似文献/References:

[1]张志强,孙若斌,徐冠基,等.采用非相关字典学习的滚动轴承故障诊断方法[J].西安交通大学学报,2019,53(06):029.[doi:10.7652/xjtuxb201906005]
 ZHANG Zhiqiang,SUN Ruobin,XU Guanji,et al.Bearing Fault Diagnosis Based on Incoherent Dictionary Learning[J].Journal of Xi'an Jiaotong University,2019,53(09):029.[doi:10.7652/xjtuxb201906005]
[2]向宙,张西宁,张雯雯,等.区分自编码网络及其在滚动轴承故障特征提取中的应用[J].西安交通大学学报,2019,53(08):047.[doi:10.7652/xjtuxb201908007]
 XIANG Zhou,ZHANG Xining,ZHANG Wenwen,et al.Discriminative Auto-Encoding Network with Applications in Fault Feature Extraction of Rolling Bearing[J].Journal of Xi'an Jiaotong University,2019,53(09):047.[doi:10.7652/xjtuxb201908007]
[3]廖彬,张陶,于炯,等.QPR-NN:一种结合二次多项式回归与神经网络的推荐算法[J].西安交通大学学报,2019,53(09):079.[doi:10.7652/xjtuxb201909011]
 LIAO Bin,ZHANG Tao,YU Jiong,et al.QPR-NN:A New Recommendation Algorithm Combining Quadric Polynomial Regression and Neural Network[J].Journal of Xi'an Jiaotong University,2019,53(09):079.[doi:10.7652/xjtuxb201909011]
[4]胡怀中,张建博,刘汉青,等.采用卷积神经网络的电站锅炉燃烧效率建模方法[J].西安交通大学学报,2019,53(10):010.[doi:10.7652/xjtuxb201910002]
 HU Huaizhong,ZHANG Jianbo,LIU Hanqing,et al.Power Plant Boiler Combustion Efficiency Modeling Approach Based on Convolutional Neural Networks[J].Journal of Xi'an Jiaotong University,2019,53(09):010.[doi:10.7652/xjtuxb201910002]
[5]刘弹,李晓婉,梁霖,等.采用时间序列突变点检测的滚动轴承性能退化评价方法[J].西安交通大学学报,2019,53(12):010.[doi:10.7652/xjtuxb201912002]
 LIU Dan,LI Xiaowan,LIANG Lin,et al.A Method for Evaluating Performance Degradation of Rolling Bearings Using Detection of Time Series Mutation Point[J].Journal of Xi'an Jiaotong University,2019,53(09):010.[doi:10.7652/xjtuxb201912002]
[6]张帆,张景森,裴昌幸.采用双通道时间稠密网络的高光谱影像分类方法[J].西安交通大学学报,2020,54(04):126.[doi:10.7652/xjtuxb202004016]
 ZHANG Fan,ZHANG Jingsen,PEI Changxing.A Classification Algorithm of Hyperspectral Images Based on Double Channel Temporal Dense Network[J].Journal of Xi'an Jiaotong University,2020,54(09):126.[doi:10.7652/xjtuxb202004016]

备注/Memo

备注/Memo:
收稿日期: 2020-01-10。作者简介: 赵诗琪(1996—),女,硕士生; 徐进(通信作者),女,教授,博士生导师。基金项目: 国家重点研发计划资助项目(2017YFB1300303,2018YFC2002601); 陕西省自然科学基础研究计划资助项目(2019JM-293)。
更新日期/Last Update: 2020-09-10