[1]王胜男,阿达依·谢尔亚孜旦,章翔峰,等.考虑轴柔性的二级齿轮减速器振动噪声研究[J].西安交通大学学报,2020,54(09):117-127.[doi:10.7652/xjtuxb202009013]
 WANG Shengnan,ADAYI Xieeryazidan,ZHANG Xiangfeng,et al.Vibration and Noise Analysis for Two-Stage Gear Reducer Considering Shaft Flexibility[J].Journal of Xi'an Jiaotong University,2020,54(09):117-127.[doi:10.7652/xjtuxb202009013]
点击复制

考虑轴柔性的二级齿轮减速器振动噪声研究
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第09期
页码:
117-127
栏目:
出版日期:
2020-09-10

文章信息/Info

Title:
Vibration and Noise Analysis for Two-Stage Gear Reducer Considering Shaft Flexibility
文章编号:
0253-987X(2020)09-0117-11
作者:
王胜男 阿达依·谢尔亚孜旦 章翔峰 周建星
新疆大学机械工程学院, 830047, 乌鲁木齐
Author(s):
WANG Shengnan ADAYI Xieeryazidan ZHANG Xiangfeng ZHOU Jianxing
School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China
关键词:
齿轮箱 轴柔性 有限元法 轴承动载荷 辐射噪声
Keywords:
gearbox shaft flexibility finite element method bearing dynamic load radiation noise
分类号:
TH132
DOI:
10.7652/xjtuxb202009013
文献标志码:
A
摘要:
针对齿轮箱在实际运行过程中存在的轴系变形问题,提出了一种二级齿轮减速器在多源时变激励作用下振动噪声的计算方法。综合考虑齿轮、轴承时变刚度以及误差激励的影响,并引入二级齿轮相位关系,采用有限元法建立了计入轴柔性的二级直齿轮-轴-轴承系统耦合动力学模型。通过Newmark时域积分法求解系统动力学方程,得到各轴承动载荷,并分析了传动系统的固有特性及轴的静变形特征。采用有限元法对齿轮箱进行模态分析,提取箱体各阶固有频率与振型。以轴承频域动载荷为齿轮箱激励,利用模态叠加法计算得到齿轮箱的振动响应,并采用声学边界元法对齿轮箱的辐射噪声进行了计算。分析了轴柔性和转速对轴承动载荷与箱体辐射噪声的影响。仿真结果表明:计入轴柔性后,轴承动载荷波动幅值降低,激励频率成分也随之减少; 在低频段200~900 Hz与高频段1 800 Hz附近,箱体的主要共振模式发生改变,顶部场点噪声有所降低; 随着转速的升高,激起了传动系统轴系弯曲振动模式,并引起传动系统振动幅值增大,且齿轮箱顶部场点噪声明显大于两侧场点噪声。研究结果可为减速器的减振降噪设计提供理论参考。
Abstract:
Aiming at the problem of shaft deformation in the actual operation of gearbox, a method for calculating the vibration and noise of a two-stage gear reducer under the multi-source time-varying excitation is proposed. Considering the effects of the time-varying stiffness of gear and bearing, a coupled dynamic model of the two-stage spur gear-shaft-bearing system considering shaft flexibility and phase relationship is developed. The bearing dynamic loads and inherent characteristics of gear transmission system are calculated and analyzed by the Newmark integration method. Taking the bearing dynamic loads as the excitation of gearbox, the modal analysis of the housing is carried out by finite element method, and the natural frequencies and mode shapes of the housing are obtained. The vibration response of the gearbox is calculated by the modal superposition method, and the radiation noise of the gearbox is calculated via acoustic boundary element method. The influences of shaft flexibility and input speed on the dynamic response and the radiation noise of the gearbox are analyzed. The results indicate that, the fluctuation amplitude of bearing dynamic load and excitation frequency components are reduced by taking into account the flexibility of shaft. At low frequencies(200 - 900 Hz)and near 1 800 Hz, the dominant resonance mode shape of the gearbox is changed and noise is reduced. As the speed increases, the system undergoes the bending vibration of the shaft, which causes an increase in the vibration amplitude of the gear transmission system. The field point noise on the top of the gearbox is obviously greater than on the sides. The results may serve as theoretical reference for the design of vibration and noise reduction.

参考文献/References:

[1] PARKER R G. Non-linear dynamic response of a spur gear pair: modeling and experimental comparisons [J]. Journal of Sound and Vibration, 2000, 237(3): 435-455.
[2] 孙月海, 张策, 潘凤章, 等. 直齿圆柱齿轮传动系统振动的动力学模型 [J]. 机械工程学报, 2000, 36(8): 47-50.
SUN Yuehai, ZHANG Ce, PAN Fengzhang, et al. Dynamic model of a spur gear transmission system vibration [J]. Journal of Mechanical Engineering, 2000, 36(8): 47-50.
[3] 吴新跃, 朱石坚. 人字齿轮传动的振动理论分析模型 [J]. 海军工程大学学报, 2001, 13(5): 13-19.
WU Xinyue, ZHU Shijian. Theoretical vibration pattern of herringbone gearing [J]. Journal of Naval University of Engineering, 2001, 13(5): 13-19.
[4] NERIYA S V, BHAT R B, SANKAR T S. Coupled torsional-flexural vibration of a geared shaft system using finite element method [J]. Shock and Vibration Bulletin, 1985, 55(3): 13-25.
[5] KAHRAMAN A, OZGUVEN H N, HOUSER D R. Dynamic analysis of geared rotors by finite elements [J]. Journal of Mechanical Design, 1992, 114(3): 507-514.
[6] KUBUR M, KAHRAMAN A, ZINI D M. Dynamic analysis of a multi-shaft helical gear transmission by finite elements: model and experiment [J]. Journal of Vibration and Acoustics, 2004, 126(7): 398-406.
[7] 常乐浩, 贺朝霞, 刘更. 平行轴齿轮传动系统动力学建模的有限单元法 [J]. 振动与冲击, 2016, 35(20): 47-53.
CHANG Lehao, HE Chaoxia, LIU Geng. Dynamic modeling of parallel shaft gear transmissions using finite element method [J]. Journal of Vibration and Shock, 2016, 35(20): 47-53.
[8] 许华超, 秦大同, 刘长钊, 等. 计入结构柔性的直升机主减速器振动特性分析 [J]. 航空动力学报, 2019, 34(5): 1020-1028.
XU Huachao, QING Datong, LIU Changzhao, et al. Vibration characteristics analysis for helicopter main gearbox considering structural flexibility [J]. Journal of Aerospace Power, 2019, 34(5): 1020-1028.
[9] YUAN Bing, CHANG Shan, LIU Geng, et al. Quasi-static analysis based on generalized loaded static transmission error and dynamic investigation of wide-faced cylindrical geared rotor systems [J]. Mechanism and Machine Theory, 2019, 134: 74-94.
[10] KATO M, INOUE K, SHIBATA K. Evaluation of sound power radiation by gearbox [C]∥Proceedings of the International Gearing Conference. Newcastle upon Tyne, UK: University of Newcastle upon Tyne, 1994: 69-74.
[11] KOSTI S I, OGNJANOVI M. The noise structure of gear transmission units and the role of gearbox walls [J]. FME transactions, 2007, 35(2): 105-112.
[12] ABBES M S, BOUAZIZ S, CHAARI F, et al. An acoustic-structural interaction modelling for the evaluation of a gearbox-radiated noise [J]. International Journal of Mechanical Sciences, 2008, 50(3): 569-577.
[13] 陆波, 朱才朝, 宋朝省, 等. 大功率船用齿轮箱耦合非线性动态特性分析及噪声预估 [J]. 振动与冲击, 2009, 28(4): 76-80.
LU Bo, ZHU Caichao, SONG Chaosheng, et al. Coupled nonlinear dynamic characteristics analysis and noise preestimation of a large burden marine gearbox [J]. Journal of Vibration and Shock, 2009, 28(4): 76-80.
[14] 周建星, 刘更, 马尚君. 内激励作用下齿轮箱动态响应与振动噪声分析 [J]. 振动与冲击2011, 30(6): 234-238.
ZHOU Jianxing, LIU Geng, MA Shangjun. Vibration and noise analysis of gear transmission system [J]. Journal of Vibration and Shock, 2011, 30(6): 234-238.
[15] ZHOU Jianxing, SUN Wenlei, CAO Li, et al. Vibration and noise characteristics of a gear reducer under different operation conditions [J]. Journal of Low Frequency Noise, Vibration and Active Control, 2019, 38(2): 574-591.
[16] GUO Y, ERITENEL T, ERICSON T M, et al. Vibro-acoustic propagation of gear dynamics in a gear-bearing-housing system [J]. Journal of Sound and Vibration, 2014, 333(22): 5762-5785.
[17] CHEX Xi, SONG Chaosheng, ZHU Caichao, et al. Effects of macro-parameters on vibration and radiation noise for high speed wheel gear transmission in electric vehicles [J]. Journal of Mechanical Science and Technology, 2018, 32(9): 4153-4164.
[18] SANJIB Chowdhury, RAMA K. Vibration of high speed helical geared shaft systems mounted on rigid bearings [J]. International Journal of Mechanical Sciences, 2018, 33(4): 176-190.
[19] 李润方, 王建军. 齿轮系统动力学 [M]. 北京: 科学出版社, 1996: 352-355.
[20] 陈锐博, 张建杰, 周建星, 等. 考虑齿面接触特性的直齿轮啮合刚度研究 [J]. 机械传动, 2016, 40(10): 43-47.
CHEN Ruibo, ZHANG Jianjie, ZHOU Jianxing, et al. Study on the meshing stiffness of spur gear considering contact characteristic of tooth surface [J]. Journal of Mechanical Transmission, 2016, 40(10): 43-47.
[21] QIAO Zizhen, ZHOU Jianxing, SUN Wenlei. A coupling dynamics analysis method for two-stage spur gear under multisource time-varying excitation [J]. Shock and Vibration, 2019(15): 1-18.
[22] 周建星, 刘更, 吴立言. 转速与负载对减速器振动噪声的影响研究 [J]. 振动与冲击, 2013, 32(8): 193-198.
ZHOU Jianxing, LIU Geng, WU Liyan. Effect of operating conditions on vibration and noise radiation of a gear reducer [J]. Journal of Vibration and Shock, 2013, 32(8): 193-198.
[本刊相关文献链接]
刘洋洋,金英泽,王亚兵,等.表面粗糙度对低速水润滑滑动轴承混合润滑性能的影响.2020,54(7):121-128.[doi:10.7652/xjtuxb202007015]
王报龙,王亚兵,刘洋洋,等.轴系倾斜下可倾瓦推力轴承静动特性分析.2020,54(7):129-138.[doi:10.7652/xjtuxb 202007016]
陈书恒,李猛,刘恒,等.采用频谱细化的超声法在线测量滚动轴承保持架转速.2020,54(7):139-145.[doi:10.7652/xjtuxb202007017]
郭雨,赖天伟,赵琪,等.悬臂型箔片轴承应用于高速透平的实验研究.2020,54(5):40-45.[doi:10.7652/xjtuxb202005 006]
王亚兵,刘洋洋,王报龙,等.轴颈倾斜的水润滑橡胶艉轴承的静态特性.2020,54(5):61-69.[doi:10.7652/xjtuxb202005 009]
王慧,张刚,张天骐.改进型双稳随机共振系统及其在轴承故障诊断的应用.2020,54(4):110-117.[doi:10.7652/xjtuxb 202004014]
张西宁,张雯雯,周融通,等.采用单类随机森林的异常检测方法及应用.2020,54(2):1-8.[doi:10.7652/xjtuxb202002 001]
赵柄锡,冀大伟,袁奇,等.采用时域与时频域联合特征空间的转子系统碰磨故障诊断.2020,54(1):75-84.[doi:10.7652/xjtuxb202001010]
徐明宇,李亚倩,陈渭.考虑孔加工锥度误差影响的液态金属润滑螺旋槽轴承性能分析.2020,54(1):85-92.[doi:10.7652/xjtuxb202001011]
刘弹,李晓婉,梁霖,等.采用时间序列突变点检测的滚动轴承性能退化评价方法.2019,53(12):10-16.[doi:10.7652/xjtuxb201912002]
李潇潇,闫柯,葛临风,等.高速球轴承喷油润滑流场特性研究.2019,53(12):17-24.[doi:10.7652/xjtuxb201912003]
陈飞,金英泽,袁小阳.载荷方向对立式转子导轴承润滑性能的影响.2019,53(12):25-30.[doi:10.7652/xjtuxb201912 004]
刘泽潮,张兵,易彩,等.高阶频率加权能量算子在列车轴箱轴承故障诊断中的应用.2019,53(12):46-56.[doi:10.7652/xjtuxb201912007]
倪广县,陈金海,王恒.滚动轴承高维随机矩阵状态异常检测算法.2019,53(10):65-71.[doi:10.7652/xjtuxb201910009]
郭志强,门日秀,闫柯,等.涡轮增压器甩油环密封性能研究.2019,53(10):143-150.[doi:10.7652/xjtuxb201910020]
张西宁,张雯雯,周融通,等.基于多维缩放和随机森林的轴承故障诊断方法.2019,53(8):1-7.[doi:10.7652/xjtuxb 201908001]
李亚倩,杨攀,陈渭.考虑紊流和滑移影响的液态金属润滑螺旋槽轴承设计.2019,53(8):15-23.[doi:10.7652/xjtuxb 201908003]
胥永刚,田伟康,曹金鑫,等.精细谱负熵及其在滚动轴承故障诊断中的应用.2019,53(8):31-39.[doi:10.7652/xjtuxb 201908005]

备注/Memo

备注/Memo:
收稿日期: 2020-03-04。作者简介: 王胜男(1992—),女,博士生; 阿达依·谢尔亚孜旦(通信作者),男,教授。基金项目: 国家自然科学基金资助项目(51665056)。
更新日期/Last Update: 2020-09-10