[1]何娟,邓清华,高铁瑜,等.周向角和直径比对切向双旋流冷却流动与传热特性的作用机理[J].西安交通大学学报,2020,54(09):089-99.[doi:10.7652/xjtuxb202009010]
 HE Juan,DENG Qinghua,GAO Tieyu,et al.Effects of Circumferential Angle and Diameter Ratio on the Flow and Heat Transfer Characteristics of Double Swirl Cooling[J].Journal of Xi'an Jiaotong University,2020,54(09):089-99.[doi:10.7652/xjtuxb202009010]
点击复制

周向角和直径比对切向双旋流冷却流动与传热特性的作用机理
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第09期
页码:
089-99
栏目:
出版日期:
2020-09-10

文章信息/Info

Title:
Effects of Circumferential Angle and Diameter Ratio on the Flow and Heat Transfer Characteristics of Double Swirl Cooling
文章编号:
0253-987X(2020)09-0089-11
作者:
何娟12 邓清华12 高铁瑜12 丰镇平12
1.西安交通大学叶轮机械研究所, 710049, 西安; 2.陕西省叶轮机械及动力装备工程实验室, 710049, 西安
Author(s):
HE Juan12 DENG Qinghua12 GAO Tieyu12 FENG Zhenping12
1. Institute of Turbomachinery, Xi’an Jiaotong University, Xi’an 710049, China; 2. Shaanxi Engineering Laboratory of Turbomachinery and Power Equipment, Xi’an 710049, China
关键词:
双旋流冷却 周向角 直径比 努塞尔数 摩擦系数
Keywords:
double swirl cooling circumferential angle diameter ratio Nusselt number friction coefficient
分类号:
TK261
DOI:
10.7652/xjtuxb202009010
文献标志码:
A
摘要:
考虑到当前对透平叶片前缘双旋流冷却结构的流动与传热机理认识不足,建立了合理的切向双旋流冷却结构模型,采用雷诺时均Navier-Stokes方程求解SST k-ω湍流模型,数值分析了周向角为60°~120°、直径比为0.435~1.2时双旋流腔内的流动和传热特性。计算结果表明:与单旋流冷却相比,冷气在双旋流腔内形成相反涡对,在融合区出现冲击和再附现象,使综合换热性能更好。随着周向角增大,旋流腔壁面的努塞尔数先增大后减小,而摩擦系数呈现相反的变化趋势,评估得到周向角为90°时的综合换热因子最高,可以达到1.49; 当直径比为0.6时,综合换热因子可达到1.52,当直径比小于0.6时,综合换热性能几乎不受直径比影响,而直径比大于0.6时,综合换热性能随直径比增大而减小,尤其在直径比大于1时急剧下降。
Abstract:
Considering the lack of understanding of the flow and heat transfer mechanism of the double swirl cooling structure at the leading edge of turbine blades, a reasonable tangential double swirl cooling structure model was established. The SST k-ω turbulence model was solved by using the Reynolds averaged Navier-Stokes(RANS)equation. The flow and heat transfer characteristics of the double swirl chamber were analyzed when the circumferential angle is 60° - 120° and the diameter ratio is 0.435 - 1.2. The results show that, compared with the single swirl cooling, the opposite vortex pair is formed in the double swirl chamber, and the phenomenon of impingement and reattachment appears in the fusion zone, which makes the comprehensive heat transfer performance better. With the increase of the circumferential angle, the Nusselt number of the swirl chamber wall increases first and then decreases, while the friction coefficient shows an opposite trend. It is estimated that the comprehensive heat transfer factor reaches its highest value 1.94 when the circumferential angle is 90°. When the diameter ratio is 0.6, the comprehensive heat transfer factor can reach 1.52; when the diameter ratio is less than 0.6, the comprehensive heat transfer performance is almost unaffected; and when is greater than 0.6, the comprehensive heat transfer performance decreases with the diameter ratio, especially when the diameter ratio is greater than 1, the performance drops dramatically.

参考文献/References:

[1] 韩介勤, 杜达, 艾卡. 燃气轮机传热和冷却技术 [M]. 西安: 西安交通大学出版社, 2005.
[2] COLLADAY R S. Analysis and comparison of wall cooling schemes for advanced gas turbine applications: NASA TN D-6633 [R]. Cleveland, OH, USA: NASA, 1972: 1-41.
[3] ASHMOLE P J, ROLLS-ROYCE L, EAST K. Introduction the rolls-royce tay [C]∥AIAA/SAE/ASME 19th Joint Propulsion Conference. Reston, VA, USA: AIAA, 1983: 1-12.
[4] ZHOU Weilun, DENG Qinghua, FENG Zhenping. Conjugate heat transfer analysis for laminated cooling effectiveness: part A Effects of surface curvature [C]∥Proceedings of the 2016 ASME Turbo Expo. New York, USA: ASME, 2016: GT2016-57243.
[5] DENG Qinghua, ZHOU Weilun, FENG Zhengping. Conjugate heat transfer analysis for laminated cooling effectiveness: part B Effects of film hole incline angle [C]∥Proceedings of the 2016 ASME Turbo Expo. New York, USA: ASME, 2016: GT2016-57256.
[6] ZHOU Weilun, DENG Qinghua, HE Wei, et al. Effects of hole pitch to diameter ratio P/D of impingement and film hole on laminated cooling effectiveness [C]∥Proceedings of the 2017 ASME Turbo Expo. New York, USA: ASME, 2017: GT2017-64566.
[7] 罗磊. 涡轮高效设计方法及换热方法研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016: 100-110.
[8] LUO Lei, WANG Chenglong, WANG Lei, et al. Computational investigation of dimple effects on heat transfer and friction factor in a lamilloy cooling structure [J]. Journal of Enhanced Heat Transfer, 2016, 22(29): 147-175.
[9] LUO Lei, WANG Chenglong, WANG Lei, et al. A numerical investigation of dimple effects on internal heat transfer enhancement of a double wall cooling structure with jet impingement [J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 26(7): 2175-2197.
[10] SONG Wei, XU Huazhao, CHENG Xiaofang, et al. Numerical investigation on cooling air flow and resistance characteristics inner laminated cooling structures [C]∥Proceedings of the 2019 ASME Turbo Expo. New York, USA: ASME, 2019: GT2019-92025.
[11] FAN Xiaojun, LI Liang, WANG Jiefeng, et al. Heat transfer enhancement for gas turbine blade leading edge cooling using curved double-wall/vortex cooling with various disturbing objects [C]∥Proceedings of the 2019 ASME Turbo Expo. New York, USA: ASME, 2019: GT2019-90211.
[12] HAY N, WEST P D. Heat transfer in free swirling flow in a pipe [J]. Journal of Heat Transfer, 1975, 97(3): 411-416.
[13] GLEZER B, MOON H K, O’CONNELL T. A novel technique for the internal blade cooling [C]∥Proceedings of the 1996 ASME Turbo Expo. New York, USA: ASME, 1996: 96-GT-181.
[14] LIGRANI P M, HEDLUND C R, THAMBU R, et al. Flow phenomena in swirl chambers [J]. Experiments in Fluids, 1997, 24(3): 254-264.
[15] LIU Zhao, FENG Zhenping, SONG Liming. Numerical study on flow and heat transfer characteristics of swirl cooling on leading edge model of gas turbine blade [C]∥Proceedings of the 2011 ASME Turbo Expo. New York, USA: ASME, 2011: GT2011-46125.
[16] 杜长河, 范小军, 李亮, 等. 喷射角度和喷嘴数对旋流冷却流动与传热特性的影响 [J]. 西安交通大学学报, 2016, 50(4): 76-80.
DU Changhe, FAN Xiaojun, LI Liang, et al. Effects of injection angle and number of nozzles on swirl cooling flow and heat transfer characteristics [J]. Journal of Xi’an Jiaotong University, 2016, 50(4): 76-80.
[17] 杜长河, 范小军, 李亮, 等. 喷嘴长宽比和雷诺数对旋流冷却流动与传热特性的影响 [J]. 西安交通大学学报, 2015, 49(12): 124-129.
DU Changhe, FAN Xiaojun, LI Liang, et al. Effects of nozzle length-width ratio and Reynolds number on swirl cooling flow and heat transfer characteristics [J]. Journal of Xi’an Jiaotong University, 2015, 49(12): 124-129.
[18] 杜长河, 李森, 李亮, 等. 叶片前缘旋流蒸汽冷却流动和传热的数值研究 [J]. 西安交通大学学报, 2015, 49(10): 72-78.
DU Changhe, LI Sen, LI Liang, et al. Numerical study on steam cooling flow and heat transfer at blade leading edge [J]. Journal of Xi’an Jiaotong University, 2015, 49(10): 72-78.
[19] 吴凡, 杜长河, 王杰枫, 等. 周向喷嘴数对旋流冷却流动传热特性的影响 [J]. 西安交通大学学报, 2018, 52(7): 94-100.
WU Fan, DU Changhe, WANG Jiefeng, et al. Influence of the number of circumferential nozzles on the heat transfer characteristics of swirling cooling flow [J]. Journal of Xi’an Jiaotong University, 2018, 52(7): 94-100.
[20] WU Fan, LI Liang, DU Changhe, et al. Effects of circumferential nozzle number and temperature ratio on swirl cooling characteristics [J]. Applied Thermal Engineering, 2019, 154: 332-342.
[21] LERCH A, SCHIFFER H P, KLAUBERT D. Impact on adiabatic film cooling effectiveness using internal cyclone cooling [C]∥Proceedings of the 2011 ASME Turbo Expo. New York, USA: ASME, 2011: GT2011-45120.
[22] WANG Nian, HAN Je-Chin. Swirl impinging cooling on an airfoil leading edge model at large Reynolds number [J]. Journal of Thermal Science and Engineering Applications, 2019, 11(3): 031006.
[23] KUSTERER K, LIN Gang, BOHN D, et al. Heat transfer enhancement for gas turbine internal cooling by application of double swirl cooling chambers [C]∥Proceedings of the 2013 ASME Turbo Expo. New York, USA: ASME, 2013: GT2013-94774.
[24] LIN Gang, KUSTERER K, BOHN D, et al. Investigation on heat transfer enhancement and pressure loss of double swirl chambers cooling [J]. Propulsion and Power Research, 2013, 2(3): 177-187.
[25] LIN Gang, KUSTERER K, BOHN D, et al. Leading edge cooling of a gas turbine blade with double swirl chambers [C]∥Proceedings of the 2014 ASME Turbo Expo. New York, USA: ASME, 2014: GT2014-25851.
[26] KUSTERER K, BUEHLER P, LIN Gang. Conjugate heat transfer analysis of a blade leading edge cooling configuration using double swirl chambers [C]∥Proceedings of the 2016 ASME Turbo Expo. New York, USA: ASME, 2016: GT2016-56937.
[27] ZHOU Junfei, WANG Xinjun, LI Jun, et al. Effects of target channel shapes on double swirl cooling performance at gas turbine blade leading edge [J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(7): 1-15.
[28] ZHOU Junfei, WANG Xinjun, LI Jun, et al. Effects of impingement hole shapes on double swirl cooling performance at gas turbine blade leading edge [C]∥Proceedings of the 2018 ASME Turbo Expo. New York, USA: ASME, 2018: GT2018-75445.
[29] 景思睿, 张鸣远. 流体力学 [M]. 西安: 西安交通大学出版社, 2001: 189.

相似文献/References:

[1]范小军,杜长河,李亮,等.4种冷却结构对叶片前缘流动换热影响的比较研究[J].西安交通大学学报,2017,51(07):037.[doi:10.7652/xjtuxb201707006]
 FAN Xiaojun,DU Changhe,LI Liang,et al.Comparative Analysis for Flow and Heat Transfer Behavior of Blade Leading Edge among Four Cooling Structures[J].Journal of Xi'an Jiaotong University,2017,51(09):037.[doi:10.7652/xjtuxb201707006]

备注/Memo

备注/Memo:
收稿日期: 2020-03-08。作者简介: 何娟(1994—),女,博士生; 邓清华(通信作者),男,副教授,博士生导师。
更新日期/Last Update: 2020-09-10