[1]马登骞,张元桥,李志刚,等.采用三维叉排管束模型的刷式密封泄漏特性研究[J].西安交通大学学报,2020,54(09):072-80.[doi:10.7652/xjtuxb202009008]
 MA Dengqian,ZHANG Yuanqiao,LI Zhigang,et al.Investigating Leakage Flow Characteristics of Brush Seals via Three-Dimensional Staggered Tube Bundle Model[J].Journal of Xi'an Jiaotong University,2020,54(09):072-80.[doi:10.7652/xjtuxb202009008]
点击复制

采用三维叉排管束模型的刷式密封泄漏特性研究
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第09期
页码:
072-80
栏目:
出版日期:
2020-09-10

文章信息/Info

Title:
Investigating Leakage Flow Characteristics of Brush Seals via Three-Dimensional Staggered Tube Bundle Model
文章编号:
0253-987X(2020)09-0072-09
作者:
马登骞 张元桥 李志刚 李军 晏鑫
西安交通大学叶轮机械研究所, 710049, 西安
Author(s):
MA Dengqian ZHANG Yuanqiao LI Zhigang LI Jun YAN Xin
Institute of Turbomachinery, Xi’an Jiaotong University, Xi’an 710049, China
关键词:
刷式密封 三维叉排管束模型 泄漏流动 阻力特性 数值模拟
Keywords:
brush seal three-dimensional staggered tube bundle model leakage flow resistance characteristics numerical simulation
分类号:
TK474.7
DOI:
10.7652/xjtuxb202009008
文献标志码:
A
摘要:
为准确预测刷式密封的泄漏流动以及阻力特性,提出了将多块结构化网格以及动网格技术应用于刷式密封的三维叉排管束模型。多块结构化网格的使用保证了刷丝束流体域与腔室间无需设置交界面,消除了因交界面的存在引起的插值误差。动网格技术能够实现刷丝束的整体轴向压紧。数值模拟得到的刷式密封泄漏量与实验数据吻合良好,验证了数值方法的可靠性。研究了进出口总静压比(1.5,2.5,3.5)、密封间隙(0,0.1,0.2 mm)以及轴向截距减小量(0~0.005 mm)对刷式密封泄漏流动和阻力特性的影响规律,结果表明:轴向截距减小量的增大对于接触式刷式密封的泄漏量相对变化率具有支配作用; 随着密封间隙的增大,轴向截距减小量的增大对间隙刷式密封的泄漏量相对变化率的影响逐渐减弱; 具有间隙的刷式密封的流动阻力参数欧拉数远小于接触式刷式密封; 密封间隙使得刷式密封泄漏流的压力能有效地转换为动能,增大了刷式密封的泄漏量。文中发展的三维叉排管束计算模型可为刷式密封封严机理和多场耦合分析提供技术手段。
Abstract:
To accurately predict the leakage flow and resistance characteristics of brush seals, the multi-block structured mesh and the mesh motion technique are applied to the three-dimensional staggered tube bundle model of brush seals. The application of the multi-block structured mesh ensures that there is no need to set interfaces between the fluid domains of the bristle pack and cavity, hence the interpolation errors due to the existence of the interfaces are eliminated. The mesh motion technique could realize the overall axial compactness of the bristle pack. The numerical leakage flow rate of the brush seal is in good agreement with the experimental data and the validation of the developed numerical method is verified. The effects of the pressure ratio(1.5, 2.5, 3.5), sealing clearance(0, 0.1, 0.2 mm)and longitudinal pitch reduction(0 - 0.005 mm)on the leakage flow rate and flow resistance performance of the brush seal are investigated. The results show that the reduction of longitudinal pitch has dominant effect on the relative rate of leakage flow for the contacting brush seal. With the increase of sealing clearance, the effect of longitudinal pitch reduction on the relative rate of leakage flow weakens gradually for the brush seal with clearance. The flow resistance parameter Eu of the brush seal with clearance is much smaller than that of the contacting brush seal. The leakage flow rate of the brush seal with clearance is larger than that of the contacting brush seal because the sealing clearance effectively converts the pressure energy into kinetic energy of the leakage flow. The developed numerical approach based on the three-dimensional staggered tube bundle model could serve as a technical method for analysis of sealing mechanisms and multi-physical coupling of brush seals.

参考文献/References:

[1] ASLAN-ZADA F E, MAMMADOV V A, DOHNAL F. Brush seals and labyrinth seals in gas turbine applications [J]. Proceedings of the Institution of Mechanical Engineers: Part A Journal of Power and Energy, 2013, 227(2): 216-230.
[2] HENDRICKS R C, FLOWER R, HOWE H W. A brush seals program modeling and developments [J]. Journal of Rotating Machine, 1998(4): 91-96.
[3] DOGU Y. Investigation of brush seal flow characteristics using bulk porous medium approach [J]. ASME Journal of Engineering for Gas Turbines and Power, 2005, 127(1): 136-144.
[4] BRAUN M J, HENDRICKS R C, CANACCI V A. Non-intrusive qualitative and quantitative flow characterization and bulk flow model for brush seals [C]∥International Tribology Conference. Nagoya, Japan: Japanese Society of Tribologists, 1990: 1611-1616.
[5] 邱波, 李军, 冯增国, 等. 两级刷式密封泄漏特性的实验与数值研究 [J]. 西安交通大学学报, 2013, 47(7): 7-12.
QIU Bo, LI Jun, FENG Zengguo, et al. Experimental and numerical investigation of the leakage characteristics of two-stage brush seal [J]. Journal of Xi’an Jiaotong University, 2013, 47(7): 7-12.
[6] 黄首清, 索双富, 李永健, 等. 基于2维叉排管束模型的刷式密封介质流动计算 [J]. 清华大学学报, 2016, 56(2): 160-166.
HUANG Shouqing, SUO Shuangfu, LI Yongjian, et al. Flows in brush seal based on a 2-D staggered tube bundle model [J]. Journal of Tsinghua University, 2016, 56(2): 160-166.
[7] FUCHS A, HAIDN O J. Effects of uncertainty and quasi-chaotic geometry on the leakage of brush seals [J]. ASME Journal of Turbomachinery, 2019, 141(2): 021003.
[8] PEKRIS M J, FRANCESCHINI G, GILLESPIE D R H. An investigation of flow, mechanical, and thermal performance of conventional and pressure-balanced brush seals [J]. ASME Journal of Engineering for Gas Turbines and Power, 2014, 136(6): 062502.
[9] HUANG S, SUO S, LI Y, et al. Theoretical and experimental investigation on tip forces and temperature distributions of the brush seal coupled aerodynamic force [J]. ASME Journal of Engineering for Gas Turbines and Power, 2014, 136(5): 052502.
[10] LIU Y, CHEW J W, PEKRIS M J, et al. The effect of inlet swirl on brush seal bristle deflections and stability [C]∥ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. New York, USA: ASME, 2019: GT2019-90137.
[11] 孙丹, 白伟钢, 刘宁宁, 等. 基于能量法的刷式密封刷丝颤振流固耦合研究 [J]. 推进技术, 2018, 39(3): 619-629.
SUN Dan, BAI Weigang, LIU Ningning, et al. Fluid-solid interaction study of brush seals bristle flutter with energy method [J]. Journal of Propulsion Technology, 2018, 39(3): 619-629.
[12] 李国勤, 孙丹, 刘永泉, 等. 基于ALE流固耦合方法的刷式密封泄漏特性理论与实验研究 [J/OL]. 推进技术. [2020-01-30]. https:∥doi.org/10.13675/j. cnki.tjjs.190354.
LI Guoqin, SUN Dan, LIU Yongquan, et al. Theoretical and experimental study on leakage characteristics of brush seal based on ALE fluid-structure coupled methodology [J/OL]. Journal of Propulsion Technolo-gy. [2020-01-30]. https:∥doi.org/10.13675/j.cnki. tjjs.190354.
[13] BAYLEY F J, LONG C A. A combined experimental and theoretical study of flow and pressure distributions in a brush seal [J]. ASME Journal of Engineering for Gas Turbines and Power, 1993, 115(2): 404-410.
[14] WEN J, FU Y, BAO X, et al. Flow resistance and convective heat transfer performances of airflow through helical-tube bundles [J]. International Journal of Heat and Mass Transfer, 2019, 130: 778-786.
[15] KANG Y, LIU M, KAO-WALTER S, et al. Predicting aerodynamic resistance of brush seals using computational fluid dynamics and a 2-D tube banks model [J]. Tribology International, 2018, 126: 9-15.

相似文献/References:

[1]李军,晏鑫,丰镇平,等.基于多孔介质模型的刷式密封泄漏流动特性研究[J].西安交通大学学报,2007,41(07):768.[doi:10.7652/xjtuxb200707003]
 Li Jun,Yan Xin,Feng Zhenping,et al.Study on the Leakage Flow Characteristics of Brush Seal Based on Porous Medium Model[J].Journal of Xi'an Jiaotong University,2007,41(09):768.[doi:10.7652/xjtuxb200707003]
[2]陈春新,李军,丰镇平.刷式密封刷丝束与转子接触力的数值研究[J].西安交通大学学报,2010,44(07):023.[doi:10.7652/xjtuxb201007006]
 CHEN Chunxin,LI Jun,FENG Zhenping.Numerical Investigation into BristleRotor Contact Force of Brush Seals[J].Journal of Xi'an Jiaotong University,2010,44(09):023.[doi:10.7652/xjtuxb201007006]
[3]陈春新,邱波,李军,等.刷式密封迟滞特性的数值研究[J].西安交通大学学报,2011,45(05):036.[doi:10.7652/xjtuxb201105007]
 CHEN Chunxin,QIU Bo,LI Jun,et al.Numerical Investigations on the Hysteresis Characteristics of Brush Seals[J].Journal of Xi'an Jiaotong University,2011,45(09):036.[doi:10.7652/xjtuxb201105007]
[4]邱波,李军.刷式密封传热特性研究[J].西安交通大学学报,2011,45(09):094.[doi:10.7652/xjtuxb201109018]
 QIU Bo,LI Jun.Investigation on the Heat Transfer Characteristics of Brush Seals[J].Journal of Xi'an Jiaotong University,2011,45(09):094.[doi:10.7652/xjtuxb201109018]
[5]马登骞,张元桥,李军,等.考虑刷丝变形的后夹板结构对刷式密封泄漏和传热特性影响的研究[J].西安交通大学学报,2019,53(09):015.[doi:10.7652/xjtuxb201909003]
 MA Dengqian,ZHANG Yuanqiao,LI Jun,et al.Effects of Backing Plate Structure on Leakage and Heat Transfer Characteristics of Brush Seals Considering Bristle Pack Deformation[J].Journal of Xi'an Jiaotong University,2019,53(09):015.[doi:10.7652/xjtuxb201909003]

备注/Memo

备注/Memo:
收稿日期: 2020-02-21。作者简介: 马登骞(1994—),男,博士生; 李军(通信作者),男,教授,博士生导师。基金项目: 国家重点研发计划资助项目(2017YFB0601804); 国家自然科学基金资助项目(51776152)。
更新日期/Last Update: 2020-09-10