[1]杜媛英,李明,刘刚,等.混合流润滑条件下的水润滑橡胶轴承的润滑特性[J].西安交通大学学报,2020,54(09):049-57.[doi:10.7652/xjtuxb202009005]
 DU Yuanying,LI Ming,LIU Gang,et al.Lubrication Characteristics of Water-Lubricated Rubber Bearings in Mixed-Flow Lubrication[J].Journal of Xi'an Jiaotong University,2020,54(09):049-57.[doi:10.7652/xjtuxb202009005]
点击复制

混合流润滑条件下的水润滑橡胶轴承的润滑特性
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第09期
页码:
049-57
栏目:
出版日期:
2020-09-10

文章信息/Info

Title:
Lubrication Characteristics of Water-Lubricated Rubber Bearings in Mixed-Flow Lubrication
文章编号:
0253-987X(2020)09-0049-09
作者:
杜媛英12 李明1 刘刚1 李自刚1 侯高强1
1.西安科技大学理学院, 710054, 西安; 2.兰州理工大学能源与动力工程学院, 730050, 兰州
Author(s):
DU Yuanying12 LI Ming1 LIU Gang1 LI Zigang1 HOU Gaoqiang1
1. College of Science, Xi’an University of Science and Technology, Xi’an 710054, China; 2. College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
关键词:
水润滑橡胶轴承 混合流润滑 雷诺数 衬层变形 水膜压力
Keywords:
water-lubricated rubber bearing mixed-flow lubrication Reynolds number liner deformation water film pressure
分类号:
TG156
DOI:
10.7652/xjtuxb202009005
文献标志码:
A
摘要:
针对水润滑橡胶轴承在混合流态下的润滑问题,基于层流、湍流经典润滑理论建立了水润滑橡胶轴承混合流态下的润滑方程,采用有限差分法分析了混合流润滑下的雷诺数、水膜厚度、衬层变形及水膜压力随偏心率、转速和长径比的变化规律,并将层流、湍流和混合流3种润滑流态下计算得到的润滑特性进行了对比分析。结果表明:混合流润滑方程比层流和湍流润滑方程更适合水润滑橡胶轴承的实际运行工况,混合流润滑下的水膜厚度、衬层变形和水膜压力的取值范围均处在层流润滑和湍流润滑之间; 在混合流润滑下,雷诺数在承压区随偏心率的增大而减小,同时随转速的增加而增大; 水膜厚度随偏心率的增大而减小,随转速和长径比的增大而增大; 偏心率对最大衬层变形的影响最大,转速的影响次之,长径比的影响最小; 水膜压力在承压区随着偏心率、转速和长径比的增加均增大。此研究可为准确分析水润滑橡胶轴承实际运行工况下的润滑特性提供参考,也可为计算流体动力学(CFD)仿真水润滑轴承润滑机理的研究提供依据。
Abstract:
To study the lubrication characteristics of water-lubricated rubber bearings(WLRBs)in mixed-flow state, based on the classical laminar flow and turbulent lubrication theory, the mixed flow lubrication equations were established for WLRBs. Adopting the finite difference method, the variations of Reynolds number, water film thickness, liner deformation and water film pressure with eccentricity, rotational speed, and length to diameter ratio under mixed-flow lubrication were investigated, and the lubrication characteristics in three different lubrication states of laminar, turbulent and mixed flows were studied. The results show that the mixed-flow lubrication equations are more suitable for the actual operating conditions of WLRBs than the laminar and turbulent theories. For the mixed-flow lubrication, the value ranges of water film thickness, liner deformation and water film pressure are all between that of laminar and turbulent lubrications. For the mixed-flow lubrication, the Reynolds number decreases with the eccentricity in the pressure-bearing zone but increases with the rotational speeds; the dimensionless water film thickness decreases with the eccentricity, and increases with the rotational speed and the length to diameter ratio. The eccentricity has the biggest influence on the maximum liner deformation, followed by the rotational speed, and the smallest influence is the length to diameter ratio. The film pressure increases with the eccentricity, the rotational speed and the length-to-diameter ratio in the pressure-bearing zone. This study may provide reference for the accurate analysis on the lubrication characteristics of WLRBs under actual operating conditions, and also provide a basis for the simulation research via computational fluid dynamics(CFD)on lubrication mechanism of WLRBs.

参考文献/References:

[1] TAYLOR G I. Stability of a viscous liquid contained between two rotating cylinders [J]. Proceedings of the Royal Society: A, 1923, 102(718): 541-542.
[2] TAYLOR C M, DOWSON D. Turbulent lubrication theory: application to design [J]. Journal of Lubrication Technology, 1974, 96(1): 36-46.
[3] KING K F, TAYLOR C M. A theoretical estimation of the performance of journal bearings operating in the turbulent lubrication regime [J]. Journal of Mechanical Engineering Science, 1975, 17(2): 52-56.
[4] CONSTANTINESCU V N. On turbulent lubrication [J]. Proceedings of the Institution of Mechanical Engineers, 1959, 173(1): 881-900.
[5] CONSTANTINESCU V N. Analysis of bearing operating in turbulent regime [J]. Journal of Basic Engineering, 1962, 82: 139-151.
[6] NG C W, PAN C H T. A linearized turbulent lubrication theory [J]. Journal of Basic Engineering, 1965, 87: 675-688.
[7] NG C W. Fluid dynamic foundation of turbulent lubrication theory [J]. Wear, 1964, 7(4): 311-321.
[8] ELROD H G, NG C W. A theory for turbulent fluid films and its application to bearings [J]. Journal of Lubrication Technology, 1967, 89(3): 346-362.
[9] CABRERA D L, WOOLLEY N H, ALLANSON D R, et al. Film pressure distribution in water-lubricated rubber journal bearings [J]. Proceedings of the Institution of Mechanical Engineers: Part J Journal of Engineering Tribology, 2005, 219(2): 125-132.
[10] FRêNE J, ARGHIR M, CONSTANTINESCU V N. Combined thin-film and Aavier-Stokes analysis in high Reynolds number lubrication [J]. Tribology International, 2006, 39(8): 734-747.
[11] SHENOY B S, PAI R. Stability characteristics of an externally adjustable fluid film bearing in the laminar and turbulent regimes [J]. Tribology International, 2010, 43(9): 1751-1759.
[12] SHYU S H, JENG Y R, CHANG C C. Load capacity for adiabatic infinitely wide plane slider bearings in the turbulent thermohydrodynamic regime [J]. Tribology Transactions, 2004, 47(3): 396-401.
[13] 王迎佳, 刘敏珊, 岑少起, 等. 层流紊流共存时径向滑动轴承热流体润滑性能分析 [J]. 郑州大学学报(工学版), 2013, 34(5): 43-47.
WANG Yingjia, LIU Minshan, CEN Shaoqi, et al. Analysis of lubrication performance of hot fluid of journal bearing under the coexistence state of fluid with laminar flow and turbulence [J]. Journal of Zhengzhou University(Engineering Science), 2013, 34(5): 43-47.
[14] LITWIN W. Influence of surface roughness topography on properties of water-lubricated polymer bearings: experimental research [J]. Tribology Transactions, 2011, 54(3): 351-361.
[15] LITWIN W. Influence of main design parameters of ship propeller shaft water-lubricated bearings on their properties [J]. Polish Maritime Research, 2010, 17(4): 39-45.
[16] MALLYA R, SHENOY S B, PAI R. Static characteristics of misaligned multiple axial groove water-lubricated bearing in the turbulent regime [J]. Proceedings of the Institution of Mechanical Engineers: Part J Journal of Engineering Tribology, 2017, 231(3): 385-398.
[17] LV F, RAO Z, TA N, et al. Mixed-lubrication analysis of thin polymer film overplayed metallic marine stern bearing considering wall slip and journal misalignment [J]. Tribology International, 2017, 109: 390-397.
[18] GAO G, YIN Z, JIANG D, et al. Numerical analysis of plain journal bearing under hydrodynamic lubrication by water [J]. Tribology International, 2014, 75: 31-38.
[19] LITWIN W, DYMARSKI C. Experimental research on water-lubricated marine stern tube bearings in conditions of improper lubrication and cooling causing rapid bush wear [J]. Tribology International, 2016, 95: 449-455.
[20] DU Y, LI M. Effects on lubrication characteristics of water-lubricated rubber bearings with journal tilting and surface roughness [J]. Proceedings of the Institution of Mechanical Engineers: Part J Journal of Engineering Tribology, 2020, 234(2): 161-171.
[21] GENG T, MENG Q C, WANG N, et al. Experimental investigation of film pressure distribution in water-lubricated rubber journal bearings [J]. Proceedings of the Institution of Mechanical Engineers: Part J Journal of Engineering Tribology, 2014, 228(4): 397-406.
[22] OUYANG W, ZHANG X, JIN Y, et al. Experimental study on the dynamic performance of water-lubricated rubber bearings with local contact [J]. Shock and Vibration, 2018, 2018: 1-10.
[23] WANG N, MENG Q, WANG P, et al. Experimental research on film pressure distribution of water-lubricated rubber bearing with multiaxial grooves [J]. Journal of Fluids Engineering, 2013, 135(8): 084501.
[24] 王楠, 孟庆丰, 王朋朋, 等. 水润滑橡胶轴承特性仿真与试验研究 [J]. 机械工程学报, 2014, 50(13): 113-121.
WANG Nan, MENG Qingfeng, WANG Pengpeng, et al. Simulation and experimental research on properties of water-lubricated rubber bearing [J]. Journal of Mechanical Engineering, 2014, 50(13): 113-121.
[25] 王楠, 孟庆丰, 张雪冰, 等. 多沟槽水润滑橡胶轴承水膜压力的无线测试方法 [J]. 西安交通大学学报, 2013, 47(3): 1-6.
WANG Nan, MENG Qingfeng, ZHANG Xuebing, et al. Wireless measurement for film pressure of multigroove water-lubricated rubber bearing [J]. Journal of Xi’an Jiaotong University, 2013, 47(3): 1-6.
[26] 徐芝纶. 弹性力学 [M]. 北京: 高等教育出版社, 2015: 221-223.
[27] LITWIN W. Experimental research on water lubricated three layer sliding bearing with lubrication grooves in the upper part of the bush and its comparison with a rubber bearing [J]. Tribology International, 2015, 82: 153-161.

备注/Memo

备注/Memo:
收稿日期: 2020-03-04。作者简介: 杜媛英(1988—),女,在职博士生,工程师。基金项目: 国家自然科学基金资助项目(11972282); 陕西省自然科学基金重点资助项目(2018JZ1001)。
更新日期/Last Update: 2020-09-10