[1]李志刚,方志,李军.液相和多相环境下环形动密封泄漏流动和转子动力特性的研究进展[J].西安交通大学学报,2020,54(09):001-22.[doi:10.7652/xjtuxb202009001]
 LI Zhigang,FANG Zhi,LI Jun.Review of the Leakage Flow and Rotordynamic Characteristics of the Annular Dynamic Seals in Liquid and Multiple Phases Conditions[J].Journal of Xi'an Jiaotong University,2020,54(09):001-22.[doi:10.7652/xjtuxb202009001]
点击复制

液相和多相环境下环形动密封泄漏流动和转子动力特性的研究进展
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第09期
页码:
001-22
栏目:
出版日期:
2020-09-10

文章信息/Info

Title:
Review of the Leakage Flow and Rotordynamic Characteristics of the Annular Dynamic Seals in Liquid and Multiple Phases Conditions
文章编号:
0253-987X(2020)09-0001-22
作者:
李志刚 方志 李军
西安交通大学叶轮机械研究所, 710049, 西安
Author(s):
LI Zhigang FANG Zhi LI Jun
Institute of Turbomachinery, Xi’an Jiaotong University, Xi’an 710049, China
关键词:
环形动密封 液相和多相环境 泄漏流动 转子动力特性 实验测量 数值模拟
Keywords:
annular dynamic seal liquid and multiple phases conditions leakage flow rotordynamics experimental measurement numerical simulation
分类号:
TK421
DOI:
10.7652/xjtuxb202009001
文献标志码:
A
摘要:
为保证泵和压气机的全负荷、高效和稳定运行,针对运行在液相和多相环境下的环形动密封特殊的泄漏流动和流体激振转子动力特性,研究人员开展了大量的理论和实验研究。首先,对液相和多相环形动密封的应用背景、密封流体激振力产生机理和转子动力特性系数数学模型进行了分析; 然后,分别对纯液相环境下的环形动密封技术性能分析方法和结构设计研究进展,气液两相环境下环形动密封的泄漏流动、转子耗功和动力特性的研究现状,以及湿气环境下环形动密封技术的泄漏流动和转子动力特性的实验测量和数值模拟方面的研究结论进行了综述; 最后,基于目前液相和多相环境下环形动密封性能在实验测量、数值模拟和理论分析方面的研究结论,展望了环形动密封技术在多相环境下的泄漏流动和流体激振转子动力特性方面需要深入开展的研究课题。针对纯液相环形动密封,研究人员已开发了相应的实验测试方法和基于BULK FLOW模型和CFD(computational fluid dynamics)的数值预测方法,还需进一步开展高效抑振方法和高阻尼液相动密封技术研究; 针对气液两相环形动密封,研究人员主要通过实验测量方法获得气相组分和液相组分对密封泄漏和转子动力特性的影响规律,还需进一步开展气液两相密封高精度数值预测方法和密封微小间隙内两相流动机理研究。
Abstract:
To meet the requirements of the high efficiency and stability for compressors and pumps at full load operations, numerous theoretical and experimental studies have been conducted for annular dynamic seals working in pure liquid and multiphase environments, focusing on the special seal leakage and rotordynamic performance. Firstly, the application background in pure liquid and multiphase environments, as well as the fluid-induced excitation mechanism and the mathematical model of rotordynamic coefficients, is introduced for annular dynamic seals. Secondly, the recent advances in the performance analysis method and geometry design are summarized for the annular dynamic seals in pure liquid. The research status of the leakage flow, drag loss and rotordynamics is also introduced for the annular dynamic seals in gas-liquid two-phase(gas in liquid)conditions. What is more, the main conclusions from the experimental measurements and numerical simulations on the leakage flow and rotordynamic coefficients are discussed for the annular dynamic seal in wet gas conditions. Finally, based on the summarized experimental, numerical and theoretical studies on the performance of the annular dynamic seals in pure liquid and multiphase fluids, further research topics are proposed for the annular dynamic seals in multiphase conditions. For the annular dynamic seal in pure fluid, the experimental measurement techniques have been developed, as well as numerous numerical methods based on the BULK FLOW model and CFD. Consequently, high-efficient vibration suppression method and advanced liquid damper seal need to be developed. For gas-liquid two-phase seals, the seal leakage and rotordynamic characteristics have been investigated on test rigs in laboratory, mainly focusing on the effects of gas volume factor and liquid volume factor. Therefore, high-accuracy numerical prediction method and two-phase flow mechanism in seal clearance need to be further researched.

参考文献/References:

[1] 李军, 晏鑫, 李志刚. 热力透平密封技术 [M]. 西安: 西安交通大学出版社, 2015.
[2] SAN ANDRéS L, LU X, ZHU J. Leakage and force coefficients for pump annular seals operating with air/oil mixtures: measurements vs predictions and air injection to increase seal dynamic stiffness [C/OL]∥Proceedings of the 47th Turbomachinery and 34th Pump Symposia, 17-20 Sept. 2018, Houston, Texas, USA. [2020-03-15]. https:∥oaktrust.library.tamu. edu/ha ndle/1969.1/175007.
[3] ZHANG M. Experimental study of the static and dynamic characteristics of a long(L/D=0.65)smooth annular seal operating under two-phase(liquid/gas)conditions [D]. Texas, USA: Texas T&M University. College Station, 2017.
[4] GONG H, FALCONE S G, TEODORIU C, et al. Comparison of multiphase pumping technologies for subsea and downhole applications [J]. Oil and Gas Facilities, 2020, 1(1): 36-46.
[5] MUSGROVE G O, POEMER M A, CIRRI M, et al. Overview of important considerations in wet gas compression testing and analysis [C/OL]∥Proceedings of the 43th Turbomachinery & 30th Pump User Symposia, 23-25 Sept.2014. Houston, Texas, USA. [2020-03-15].https:∥oaktrust.library.tamu.edu/handle/1969. 1/162717.
[6] SMITH D R, PRICE S M, KUNZ F K. Centrifugal pump vibration caused by supersynchronous shaft instability use of pumpout vanes to increase pump shaft stability [C/OL]∥Proceedings of the 13th International Pump Users Symposium, 5-7 Mar. 1996, Houston, Texas, USA. [2020-03-15]. https:∥oaktrust. library.tamu.edu/handle/1969.1/164164.
[7] CHILDS D W, NELSON C, NICKS C, et al. Theory versus experiment for the rotordynamic coefficients of annular gas seals: part 1 Test facility and apparatus [J]. ASME Journal of Tribology, 1986, 108(3): 426-431.
[8] KIM C H, CHILDS D W. Analysis for rotordynamic coefficients of helically-grooved turbulent annular seals [J]. ASME Journal of Tribology, 1987, 109(1): 136-143.
[9] LI Z, LI J, YAN X. Multiple frequencies elliptical whirling orbit model and transient RANS solution approach to rotordynamic coefficients of annual gas seals prediction [J]. ASME Journal of Vibration and Acoustics, 2013, 135(3): 031005.
[10] CHILDS D W. Turbomachinery rotordynamics with case studies [M]. Wellborn, TX, USA: Minter Spring Publishing, 2013.
[11] MASSEY I. Subsynchronous vibration problems in high-speed multistage centrifugal pumps [C/OL]∥14th Turbomachinery and Pump Symposium. [2020-03-15]. https:∥oaktrust.library.tamu.edu/handle/1969.1/163638.
[12] IWATSUBO T, SHENG B, MATSUMOTO T. An experimental study on the static and dynamic characteristics of pump annular seals: technical report N89-22904 [R]. Washington DC, USA: National Aeronautics and Space Administration, 1989.
[13] FLORJANCIC S, MCCLOSKEY T. Measurement and prediction of full scale annular seal coefficients [C/OL]∥Proceedings of the 8th International Pump Users Symposium. [2020-03-15]. https:∥oaktrust.library. ta mu.edu/handle/1969.1/164259.
[14] BALKE N E. Analyzing the influence of a swirl brake on a smooth liquid annular seal through measuring static and rotordynamic characteristics [D]. Texas, USA: Texas A&M University. College Station, 2017.
[15] NAJEEB O A. Static and rotordynamic analysis of a plain annular(liquid)seal in the laminar regime with a swirl brake for three clearances [D]. Texas, USA: Texas A&M University. College Station, 2017.
[16] BULLOCK J T. The effects of imposed pre-swirl on the static and rotordynamic performance for smooth annular liquid seals [D]. Texas, USA: Texas A&M University. College Station, 2017.
[17] KILGORE J J, CHILDS D W. Rotordynamic coefficients and leakage flow of circumferentially grooved liquid-seals [J]. ASME Journal of Fluids Engineering, 1990, 112(3): 250-256.
[18] MARQUETTE O, CHILDS D W, SAN ANDRéS L. Eccentricity effects on the rotordynamic coefficients of plain annular seals: theory versus experiment [J]. ASME Journal of Tribology, 1997, 119(3): 443-447.
[19] MORELAND J. Influence of pre-swirl and eccentricity in smooth stator/grooved rotor liquid annular seals, static and rotordynamic characteristics [D]. Texas, USA: Texas A&M University. College Station, 2016.
[20] MORELAND A J, CHILDS D W, BULLOCK J. Measured static and rotordynamic characteristics of a smooth-stator/grooved-rotor liquid annular seal [J]. ASME Journal of Fluids Engineering, 2018, 140(10): 101109.
[21] TORRES J M. Static and rotordynamic characteristics of liquid annular seals with a circumferentially-grooved stator and smooth rotor using three levels of circumferential inlet-fluid rotation [D]. Texas, USA: Texas A&M University. College Station, 2016.
[22] CHILDS D W, TORRES J M, BULLOCK J T. Static and rotordynamic characteristics of liquid annular seals with a circumferentially-grooved stator and smooth rotor using three levels of circumferential inlet-fluid rotation [C]∥Proceedings of ASME Conference on ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. New York, USA: ASME, 2018: GT2018-75325.
[23] IWATSUBO H, SHENG B C, ONO M. Experiment of static and dynamic characteristics of spiral grooved seals: NASA CP-3122 [R]. Washington DC, USA: National Aeronautics and Space Administration, 1990: 223-233.
[24] IWATSUBO H, NISHINO T, ISHIMARU H. A study on dynamic characteristics of double spiral grooved seals: NASA CP-3344 [R]. Washington DC, USA: National Aeronautics and Space Administration, 1996: 113-134.
[25] KANKI H, KAWAKAMI T. Experimental study on the static and dynamic characteristics of screw grooved seals [J]. ASME Journal of Vibration and Acoustics, 1988, 110(3): 326-331.
[26] CHILDS D W, NOLAN S A, KILGORE J J. Test results for turbulent annular seals, using smooth rotors and helically grooved stators [J]. ASME Journal of Tribology, 1990, 112(2): 254-258.
[27] NAGAI K, KANEKO S, TAURA H, et al. Numerical and experimental analyses of static characteristics for liquid annular seals with helical grooves in seal stator [J]. ASME Journal of Tribology, 2018, 140(5): 032201.
[28] NAGAI K, KANEKO S, TAURA H, et al. Numerical and experimental analyses of dynamic characteristics for liquid annular seals with helical grooves in seal stator [J]. ASME Journal of Tribology, 2018, 140(9): 052201.
[29] HIRS G. A bulk-flow theory for turbulence in lubricant films [J]. ASME Journal of Tribology, 1973, 95(2): 137-145.
[30] NORDMANN R, DIETZEN F, WEISER H. Calculation of rotordynamic coefficients and leakage for annular gas seals by means of finite difference techniques [J]. ASME Journal of Tribology, 1989, 111(3): 545-552.
[31] MARQUETTE O, CHILDS D W. An extended three-control-volume theory for circumferentially-grooved liquid seals [J]. ASME Journal of Tribology, 1996, 118(2): 276-285.
[32] ARGHIR M, FRENE J. A bulk-flow analysis of static and dynamic characteristics of eccentric circumferentially-grooved liquid annular seals [J]. ASME Journal of Tribology, 2004, 126(1): 316-325.
[33] IWATSUBO T, ISHIMARU H, UCHIDA T. A study on static and dynamic characteristics of spiral-grooved seals [J]. Transactions of Japan Society Mechanical Engineering: Series C, 1999, 65(632): 1395-1402.
[34] 翟璐璐. 离心泵人型槽环流迷宫密封动力学特性数值模拟与试验研究 [D]. 杭州: 浙江大学, 2015.
[35] SAN ANDRéS L, WU T, MAEDA H, et al. A computational fluid dynamics modified bulk flow analysis for circumferentially shallow grooved liquid seals [J]. ASME Journal of Engineering for Gas Turbines and Power, 2018, 140(1): 012504.
[36] WU T, SAN ANDRéS L. Pump grooved seals: a computational fluid dynamics approach to improve bulk-flow model predictions [J]. ASME Journal of Engineering for Gas Turbines and Power, 2019, 141(10): 101005.
[37] 赵经明. 涡轮泵表面织构间隙密封-转子系统动力学特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018.
[38] KIM S H, HA T W. Prediction of leakage and rotordynamic coefficients for the circumferential-groove-pump seal using CFD analysis [J]. Journal of Mechanical Science and Technology, 2016, 30(5): 2037-2043.
[39] MORTAZAVI F, PALAZZOLO A. Prediction of rotordynamic performance of smooth stator-grooved rotor liquid annular seals utilizing computational fluid dynamics [J]. ASME Journal of Vibration and Acoustics, 2018, 140(6): 031002.
[40] 李志刚. 袋型阻尼密封泄漏特性和转子动力特性研究 [D]. 西安: 西安交通大学, 2013.
[41] LI Z, LI J, FENG Z. Comparison of rotordynamic characteristics predictions for annular gas seals using the transient computational fluid dynamic method based on different single-frequency and multi-frequency rotor whirling models [J]. ASME Journal of Tribology, 2016, 138(1): 011701.
[42] LI Z, FANG Z, LI J, et al. Influence of annular/pocket groove on the static and rotordynamic characteristics of hole-pattern seals [J]. ASME Journal of Engineering for Gas Turbines and Power, 2020, 142(6): 061013.
[43] LI Z, FANG Z, LI J, et al. Numerical modelling of static and rotordynamic characteristics for three types of helically-grooved liquid annular seals [J]. ASME Journal of Vibration and Acoustics, 2020, 142(8): 041001.
[44] 周泽新. 火箭液氧涡轮泵螺旋密封-转子系统动力学特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019.
[45] YANG J, SAN ANDRéS L. On the influence of the entrance section on the rotordynamic performance of a pump seal with uniform clearance: a sharp edge versus a round inlet [J]. ASME Journal of Engineering for Gas Turbines and Power, 2019, 141(3): 031029.
[46] KANEKO S, IKEDA T, SAITO T, et al. Experimental study on static and dynamic characteristics of liquid annular convergent-tapered damper seals with honeycomb roughness pattern [J]. ASME Journal of Tribology, 2003, 125(3): 592-599.
[47] JOLLY P, ARGHIR M, BONNEAU O, et al. Experimental and theoretical rotordynamic coefficients of smooth and round-hole pattern water-fed annular seals [J]. ASME Journal of Engineering for Gas Turbines and Power, 2018, 140(11): 112501.
[48] NAGAL K, KOISO K, KANEKO S, et al. Numerical and experimental analyses of static and dynamic characteristics for partially helically grooved liquid annular seals [J]. ASME Journal of Tribology, 2019, 141(2): 022201.
[49] 方志, 李志刚, 李军. 异形孔腔结构对液体孔型密封泄漏特性及转子耗功的影响 [J]. 西安交通大学学报, 2020, 54(1): 143-149.
FANG Zhi, LI Zhigang, LI Jun. Investigations on the effect of odd-shaped hole geometries on the leakage performance of liquid hole-pattern seals and rotor power loss [J]. Journal of Xi’an Jiaotong University, 2020, 54(1): 143-149.
[50] FANG Z, LI Z, LI J. Numerical investigation on the static and rotordynamic characteristics for two types of novel mixed helical groove seals [C]∥Proceedings of ASME Conference on ASME Turbo Expo 2020. New York, USA: ASME, 2020: GT2020-14656.
[51] ARAUZ G L, SAN ANDRéS L. Analysis of two phase flow in cryogenic damper seals: part 1 Theoretical model [J]. ASME Journal of Tribology, 1998, 120(2): 221-227.
[52] ARAUZ G L, SAN ANDRéS L. Analysis of two phase flow in cryogenic damper seals: part 2 Model validation and predictions [J]. ASME Journal of Tribology, 1998, 120(2): 228-233.
[53] SAN ANDRéS L. Rotordynamic force coefficients of bubbly mixture annular pressure seals [J]. ASME Journal of Engineering for Gas Turbines and Power, 2012, 134(2): 022503.
[54] SAN ANDRéS L, LU X. Leakage, drag power, and rotordynamic force coefficients of an air in oil(wet)annular seal [J]. ASME Journal of Engineering for Gas Turbines and Power, 2018, 140(1): 012505.
[55] SAN ANDRéS L, YANG J, LU X. On the leakage, torque, and dynamic force coefficients of air in oil(wet)annular seal: a computational fluid dynamics analysis anchored to test data [J]. ASME Journal of Engineering for Gas Turbines and Power, 2019, 141(2): 021008.
[56] LU X, SAN ANDRéS L. Leakage and rotordynamic force coefficients of a three-wave(air in oil)wet annular seal: measurements and predictions [J]. ASME Journal of Engineering for Gas Turbines and Power, 2019, 141(3): 032503.
[57] SAN ANDRéS L, LU X, WU T. On the influence of gas content on the rotordynamic force coefficients of a three-wave(air in oil)annular seal for multiple phase pumps [J]. ASME Journal of Fluids Engineering, 2020, 142(3): 031102.
[58] LU X, SAN ANDRéS L, WU T. Leakage and force coefficients of a grooved wet(bubbly liquid)seal for multiphase pumps and comparisons with prior test results for a three wave seal [J]. ASME Journal of Engineering for Gas Turbines and Power, 2020, 142(1): 011011.
[59] ZHANG M, CHILDS D W, TRAN D L, et al. A study on the leakage and rotordynamic coefficients of a long-smooth seal with laminar-two-phase, mainly-oil mixtures [J]. ASME Journal of Engineering for Gas Turbines and Power, 2020, 142(1): 011020.
[60] TRAN D L, CHILDS D W. SHRESTHA H, et al. Preswirl and mixed-flow(mainly liquid)effects on rotordynamics performance of a long(L/D=0.75)smooth seal [J]. ASME Journal of Engineering for Gas Turbines and Power, 2020, 142(3): 031012.
[61] BRENNE L, GILARRANZ J, KOCH J M. Performance evaluation of a centrifugal compressor operating under wet gas conditions [C/OL]∥34th Turbomachinery Symposium. [2020-03-15]. https:∥oaktrust. library.tamu.edu/handle/1969.1/163233.
[62] BERTONERI M, WILCOX M, TONI L, et al. Development of test stand for measuring aerodynamic, erosion, and rotordynamic performance of a centrifugal compressor under wet gas conditions [C]∥Proceedings of ASME Conference on ASME Turbo Expo 2014. New York, USA: ASME, 2014: GT2014-25349.
[63] VANNINI G, BERTONERI M, DELVESCOVO G, et al. Centrifugal compressor rotordynamics in wet gas conditions [C/OL]∥Proceedings of the 43th Turbomachinery & 30th Pump User Symposia, 23-25 Sept. 2014, Houston, TX. [2020-03-15]. https:∥oaktrust. library.tamu.edu/handle/1969.1/162697.
[64] VANNINI G, BERTONER M, NIELSEN K K, et al. Experimental results and CFD simulations of labyrinth and pocket damper seals for wet gas compression [J]. ASME Journal of Engineering for Gas Turbines and Power, 2016, 138(5): 052501.
[65] ZHANG M, MCLEAN J E, CHILDS D W. Experimental study of the static and dynamic characteristics of a long smooth seal with two-phase, mainly air mixtures [J]. ASME Journal of Engineering for Gas Turbines and Power, 2017, 139(12): 122504.
[66] ZHANG M, CHILDS D W, TRAN D L, et al. Clearance effects on rotordynamic performance of a long smooth seal with two-phase, mainly-air mixtures [J]. ASME Journal of Engineering for Gas Turbines and Power, 2019, 141(1): 012502.
[67] SHRESTHA H, CHILDS D W, TRAN D L, et al. Experimental study of the static and dynamic characteristics of a long(L/D=0.75)labyrinth annular seal operation under two-phase(liquid/gas)conditions [J]. ASME Journal of Engineering for Gas Turbines and Power, 2019, 141(11): 111002.
[68] ZHANG M, CHILDS D W. A study on the leakage and rotordynamic performance of a long labyrinth seal under mainly air conditions [J]. ASME Journal of Engineering for Gas Turbines and Power, 2019, 141(12): 121024.
[69] ZHANG M, CHILDS D W. A study for rotordynamic and leakage characteristics of a long-honeycomb seal with two-phase, mainly air mixtures [J]. ASME Journal of Engineering for Gas Turbines and Power, 2020, 142(1): 011021.
[70] LI Z, FANG Z, LI J. Numerical investigation on the leakage and rotordynamic characteristics for three types of annular gas seals in wet gas conditions [J]. ASME Journal of Engineering for Gas Turbines and Power, 2019, 141(3): 032504.
[71] YANG J, SAN ANDRéS L, LU X. Leakage and dynamic force coefficients of a pocket damper seal operating under a wet gas condition: tests versus predictions [J]. ASME Journal of Engineering for Gas Turbines and Power, 2019, 141(11): 111001.
[72] HASSINI M A, ARGHIR M. Phase change and choked flow effects on rotordynamic coefficients of cryogenic annular seals [J]. ASME Journal of Tribology, 2013, 135(10): 042201.
[本刊相关文献链接]
夏博阳,邵卫东,李军.三维间断伽辽金玻尔兹曼方法的完全匹配层吸收边界条件研究.2020,54(7):113-120.[doi:10.7652/xjtuxb202007014]
薛文松,李军,陈阳,等.横向间距和截面形状对汽轮机切向进气蜗壳气动性能的影响.2020,54(7):94-103.[doi:10.7652/xjtuxb202007012]
白波,李志刚,李军.上游台阶结构对跨声速透平叶栅端壁气膜冷却性能的影响.2020,54(5):1-8.[doi:10.7652/xjtuxb 202005001]
曹润,李志刚,邓清华,等.超临界二氧化碳离心压气机设计和气动性能研究.2020,54(4):44-52.[doi:10.7652/xjtuxb 202004006]
李健武,符阳春,张志伟,等.进口雷诺数和湿空气含湿量对冲击冷却流动和传热特性的影响.2020,54(5):170-178.[doi:10.7652/xjtuxb202005022]
董雨轩,李志刚,李军.预旋对燃气涡轮排气蜗壳气动性能影响的数值研究.2020,54(1):116-124.[doi:10.7652/xjtuxb 202001015]
薛文松,陈阳,李军,等.汽轮机切向进气蜗壳气动性能研究.2020,54(1):125-134.[doi:10.7652/xjtuxb202001016]
方志,李志刚,李军.异形孔腔结构对液体孔型密封泄漏特性及转子耗功的影响.2020,54(1):143-149.[doi:10.7652/xjtuxb202001018]
姜世杰,李志刚,李军.凹槽状小翼对涡轮动叶叶顶气动和传热性能的影响.2019,53(9):7-14.[doi:10.7652/xjtuxb2019 09002]
马登骞,张元桥,李军,等.动叶叶顶迷宫刷式密封的透平级气动性能研究.2019,53(11):10-19.[doi:10.7652/xjtuxb 201911002]
方志,李志刚,李军.孔型几何参数对孔型密封泄漏和鼓风加热特性影响研究.2019,53(1):135-141.[doi:10.7652/xjtuxb201901018]

备注/Memo

备注/Memo:
收稿日期: 2020-04-29。作者简介: 李志刚(1986—),男,副教授; 李军(通信作者),男,教授,博士生导师。基金项目: 国家重点研发计划资助项目(2017YFB0601804); 国家自然科学基金资助项目(51776152)。
更新日期/Last Update: 2020-09-10