[1]王静,孙西峰,方健珉,等.跨临界CO2汽车空调多PID控制动态性能仿真研究[J].西安交通大学学报,2020,54(08):168-176.[doi:10.7652/xjtuxb202008022]
 WANG Jing,SUN Xifeng,FANG Jianmin,et al.Dynamic Simulation of PID Control in Transcritical CO2 Automobile Air Conditioning System[J].Journal of Xi'an Jiaotong University,2020,54(08):168-176.[doi:10.7652/xjtuxb202008022]
点击复制

跨临界CO2汽车空调多PID控制动态性能仿真研究
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第08期
页码:
168-176
栏目:
出版日期:
2020-08-10

文章信息/Info

Title:
Dynamic Simulation of PID Control in Transcritical CO2 Automobile Air Conditioning System
文章编号:
0253-987X(2020)08-0168-09
作者:
王静1 孙西峰12 方健珉1 殷翔1 曹锋1
1.西安交通大学能源与动力工程学院, 710049, 西安; 2.东风汽车有限公司技术中心, 430056, 武汉
Author(s):
WANG Jing1 SUN Xifeng12 FANG Jianmin1 YIN Xiang1 CAO Feng1
1. School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China; 2. Technology Center of Dongfeng Motor Co. Ltd., Wuhan 430056, China
关键词:
二氧化碳 比例积分微分控制 汽车空调 动态仿真
Keywords:
carbon dioxide PID control automobile air conditioning dynamic simulation
分类号:
U469.72
DOI:
10.7652/xjtuxb202008022
文献标志码:
A
摘要:
为了研究出一种高效的汽车空调控制逻辑系统,借助GT-SUITE仿真软件,建立了跨临界CO2空调动态仿真模型,以节流阀开度、压缩机转速、风机转速为被控参数,以排气压力、送风温度和车厢温度为目标参数,研究了多PID控制的启动顺序和启动延迟时长对系统动态响应性能的影响,并研究了环境温度和车速随时间变化的动态工况下系统的动态响应特性。结果表明:排气压力—送风温度—车厢温度的启动顺序可以提高动态响应性能,使排气压力和送风温度的稳定时间分别缩短75%和38.9%,节流阀开度、压缩机转速、风机转速的波动范围分别减小85%、50%和63.3%; 3个PID控制器依次延时40 s启动时压缩机和风机转速的波动范围相比其他延时控制分别下降50%和63.3%,即提升了控制系统的稳定性; 在环境温度和车速随时间发生变化的过程中,PID控制响应迅速,控制目标参数的实时值稳定性高。本文提出的控制方式高效稳定,可为实际空调工程的控制设计提供参考。
Abstract:
A GT-SUITE simulation software is used to establish a transcritical CO2 air conditioning dynamic simulation model and to find efficient control logic of automobile air conditioning. The opening of throttle, compressor speed and fan speed are taken as controlled parameter; the discharge pressure supply air temperature and cabin temperature are taken as target parameter. The influence of the startup sequence and delay time on the dynamic response performance is studied. In addition, the dynamic control response characteristics under variable ambient temperature and vehicle speeds are explored. Results and comparisons with other sequences show that proper start sequence improves dynamic response performance, and the sequence with discharge pressure-supply air temperature-cabin temperature lead the stabilization times of the discharge pressure and the air temperature to be shortened by 75% and 38.9%, respectively; and the ranges of opening of throttle, compressor speed, fan speed reduced by 85%, 50% and 63.3%, respectively. When the three PID controllers delay their start time at 40 s successively, the range of the compressor and fan speeds are reduced by 50% and 63.3%, that is delayed start control logic improves the stability of the control system. The PID control response is timely and the real-time values of the control target parameters do not have any fluctuation during the changes of ambient temperature and vehicle speed. Therefore, the proposed control method is efficient and stable, and it could provide important reference for the control design of actual air conditioning project.

参考文献/References:

[1] YU Binbin, YANG Jingye, WANG Dandong, et al. An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle [J]. Energy, 2019, 189: 116147.
[2] ZHANG Ziqi, WANG Dandong, ZHANG Chenquan, et al. Electric vehicle range extension strategies based on improved AC system in cold climate: a review [J]. International Journal of Refrigeration, 2018, 88: 141-150.
[3] YU Binbin, YANG Jingye, WANG Dandong, et al. Energy consumption and increased EV range evaluation through heat pump scenarios and low GWP refrigerants in the new test procedure WLTP [J]. International Journal of Refrigeration, 2019, 100: 284-294.
[4] 李海军, 李旭阁, 周光辉, 等. 纯电动汽车超低温热泵型空调系统特性模拟研究 [J]. 低温与超导, 2014, 42(6): 63-67.
LI Haijun, LI Xuge, ZHOU Guanghui, et al. Simulation study on characteristics of ultra-low temperature Heat pump air conditioning system for pure electric vehicles [J]. Low Temperature and Superconductivity, 2014, 42(6): 63-67.
[5] LI Peihua, CHEN J J J, NORRIS S. Review of flow condensation of CO2 as a refrigerant [J]. International Journal of Refrigeration, 2016, 72: 53-73.
[6] VAGHELA J K. Comparative evaluation of an automobile air-conditioning system using R134a and its alternative refrigerants [J]. Energy Procedia, 2017, 109: 153-160.
[7] DAVIRAN S, KASAEIAN A, GOLZARI S, et al. A comparative study on the performance of HFO-1234yf and HFC-134a as an alternative in automotive air conditioning systems [J]. Applied Thermal Engineering, 2017, 110: 1091-1100.
[8] YU Binbin, YANG Jingye, WANG Dandong, et al. Experimental energetic analysis of CO2/R41 blends in automobile air-conditioning and heat pump systems [J]. Applied Energy, 2019, 239: 1142-1153.
[9] RAVIKUMAR T S, MOHAN L D. On-road performance analysis of R134a/R600a/R290 refrigerant mixture in an automobile air-conditioning system with mineral oil as lubricant [J]. Energy Conversion and Management, 2009, 50(8): 1891-1901.
[10] MENG Zhaofeng, ZHANG Hua, LEI Mingjing, et al. Performance of low GWP R1234yf/R134a mixture as a replacement for R134a in automotive air conditioning systems [J]. International Journal of Heat and Mass Transfer, 2018, 116: 362-370.
[11] KUMAR R. Sustainability of alternative material of R-134a in mobile air-conditioning system: a review [J]. Materials Today: Proceedings, 2017, 4(2): 112-118.
[12] 孙西峰, 韩杨. 汽车空调替代制冷剂的比较 [J]. 制冷与空调, 2015, 15(5): 60-67.
SUN Xifeng, HAN Yang. Comparison of automotive air conditioning alternative refrigerants [J]. Refrigeration and Air-Conditioning, 2015, 15(5): 60-67.
[13] ZHANG Z Y, WANG J Y, FENG X, et al. The solutions to electric vehicle air conditioning systems: a review [J]. Renewable and Sustainable Energy Reviews, 2018, 91: 443-463.
[14] 梁贞潜, 丁国良, 张春路, 等. 二氧化碳汽车空调器仿真与优化 [J]. 上海交通大学学报, 2002, 36(10): 1396-1400.
LIANG Zhenqian, DING Guoliang, ZHANG Chunlu, et al. Simulation and optimization of carbon dioxide automobile air conditioner [J]. Journal of Shanghai Jiao Tong University, 2002, 36(10): 1396-1400.
[15] CAO Feng, WANG Yikai, YE Zuliang. Theoretical analysis of internal heat exchanger in transcritical CO2 heat pump systems and its experimental verification [J]. International Journal of Refrigeration, 2019, 106: 506-516.
[16] RIGOLA J, ABLANQUE N, PÉREZ-SEGARRA C D, et al. Numerical simulation and experimental validation of internal heat exchanger influence on CO2 trans-critical cycle performance [J]. International Journal of Refrigeration, 2010, 33(4): 664-674.
[17] 丁国良, 黄冬平, 张春路. 跨临界二氧化碳汽车空调稳态仿真 [J]. 工程热物理学报, 2001, 22(3): 272-274.
DING Guoliang, HUANG Dongping, ZHANG Chunlu. Steady-state simulation of transcritical carbon dioxide automotive air conditioning system [J]. Journal of Engineering Thermophysics, 2001, 22(3): 272-274.
[18] ITUNA-YUDONAGO J F, BELMAN-FLORES J M, ELIZALDE-BLANCAS F, et al. Numerical investigation of CO2 behavior in the internal heat exchanger under variable boundary conditions of the transcritical refrigeration system [J]. Applied Thermal Engineering, 2017, 115: 1063-1078.
[19] 杨涛, 陈江平, 陈芝久. 跨临界二氧化碳汽车空调系统的动态仿真与实验研究 [J]. 上海交通大学学报, 2006, 40(8): 1365-1368.
YANG Tao, CHEN Jiangping, CHEN Zhijiu. Dynamic simulation and experimental validation of a transcritical CO2 automobile air conditioning system [J]. Journal of Shanghai Jiao Tong University, 2006, 40(8): 1365-1368.
[20] 陈飞. 纯电动汽车空调系统仿真及控制算法优化 [D]. 太原: 中北大学, 2015.

相似文献/References:

[1]马元,张波,彭学院,等.跨临界CO2活塞压缩机阀片运动特性的实验研究[J].西安交通大学学报,2011,45(03):025.[doi:10.7652/xjtuxb201103004]
 MA Yuan,ZHANG Bo,PENG Xueyuan,et al.Experiment on Discharge Valve Dynamics of Reciprocating Compressor inTransCritical CO2 Refrigeration Cycle[J].Journal of Xi'an Jiaotong University,2011,45(08):025.[doi:10.7652/xjtuxb201103004]
[2]白涛,晏刚,张倩.R41跨临界单级压缩带回热器热泵系统研究[J].西安交通大学学报,2011,45(03):035.[doi:10.7652/xjtuxb201103006]
 BAI Tao,YAN Gang,ZHANG Qian.Transcritical R41 Single-Stage Compression Heat PumpCycle with Internal Heat Exchanger[J].Journal of Xi'an Jiaotong University,2011,45(08):035.[doi:10.7652/xjtuxb201103006]
[3]张海清,郭蓓.采用分布参数模型的CO2微通道蒸发器数值模拟[J].西安交通大学学报,2012,46(01):042.[doi:10.7652/xjtuxb201201008]
 ZHANG Haiqing,GUO Bei.Numerical Simulation of the Carbon Dioxide Microchannel EvaporatorUsing Distributed Parameter Model[J].Journal of Xi'an Jiaotong University,2012,46(08):042.[doi:10.7652/xjtuxb201201008]
[4]王菲,邓建强.跨临界CO2引射制冷循环临界背压分析[J].西安交通大学学报,2012,46(09):066.[doi:10.7652/xjtuxb201209013]
 WANG Fei,DENG Jianqiang.Critical Back Pressure of Transcritical Carbon Dioxide Refrigeration Cycle with Ejector[J].Journal of Xi'an Jiaotong University,2012,46(08):066.[doi:10.7652/xjtuxb201209013]
[5]杨斌,李力,彭学院,等.二氧化碳制冷剂在烷基萘润滑油中的溶解度研究[J].西安交通大学学报,2012,46(12):103.[doi:10.7652/xjtuxb201212018]
 YANG Bin,LI Li,PENG Xueyuan,et al.Solubility of Carbon Dioxide Refrigerant in Alkyl Naphthalene Lubricating Oil[J].Journal of Xi'an Jiaotong University,2012,46(08):103.[doi:10.7652/xjtuxb201212018]

备注/Memo

备注/Memo:
收稿日期: 2020-01-06。作者简介: 王静(1994—),女,博士生; 曹锋(通信作者),男,教授,博士生导师。基金项目: 国家自然科学基金资助项目(51976153); 国家科技重大专项资助项目(2017-Ⅲ-0010-0036)。
更新日期/Last Update: 2020-08-10