[1]翁文庆,杨鸿辉,李剑波,等.检修期间核电安全壳内挥发性有机化学品的挥发特性研究[J].西安交通大学学报,2020,54(08):157-162.[doi:10.7652/xjtuxb202008020]
 WENG Wenqing,YANG Honghui,LI Jianbo,et al.Determination and Evaluation of Volatilization Rate and Time Period of Organic Compounds in Nuclear Power Containment During Maintenance[J].Journal of Xi'an Jiaotong University,2020,54(08):157-162.[doi:10.7652/xjtuxb202008020]
点击复制

检修期间核电安全壳内挥发性有机化学品的挥发特性研究
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第08期
页码:
157-162
栏目:
出版日期:
2020-08-10

文章信息/Info

Title:
Determination and Evaluation of Volatilization Rate and Time Period of Organic Compounds in Nuclear Power Containment During Maintenance
文章编号:
0253-987X(2020)08-0157-06
作者:
翁文庆1 杨鸿辉2 李剑波1 石博方2 姬亚军2 胡程镇1 延卫2
1.中广核研究院有限公司, 518000, 广东深圳; 2.西安交通大学环境科学与工程系, 710049, 西安
Author(s):
WENG Wenqing1 YANG Honghui2 LI Jianbo1 SHI Bofang2 JI Yajun2 HU Chengzhen1 YAN Wei2
1. China Nuclear Power Technology Research Institute Co. Ltd., Shenzhen, Guangdong 518000, China; 2. Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
关键词:
核电安全壳 火灾风险 挥发性有机化学品 定性定量测定 挥发时间
Keywords:
nuclear power containment fire disaster risk volatile organic chemical qualitative and quantitative test volatilization period
分类号:
O643.32
DOI:
10.7652/xjtuxb202008020
文献标志码:
A
摘要:
针对核电安全壳内检修期间挥发性有机化学品挥发量及挥发特性不明确,由此可能带来火灾隐患的问题,使用一种密闭空间内有机化学品挥发动力学在线检测系统,对其中具有较高挥发性的有机化学品的挥发组分进行了定性和定量测定。测试了6种挥发性有机化学品,获得了化学品的挥发动力学曲线及拟合方程,并通过计算获得了其挥发速率方程。以检修期间化学品使用厚度为0.5 mm为例,以挥发时间t=1 h和t=2 h时的挥发速率对该6种化学品完全挥发时间进行了计算,结果表明:用量最大的威第尔清洗剂的挥发时间分别达到23.46 h(挥发速率r(t=1 h),40 ℃)及33.31 h(r(t=2 h),40 ℃),实测挥发时间为27.4 h; 螺栓清洗剂的挥发时间分别达到49.59 h(r(t=1 h),40 ℃)和69.43 h(r(t=2 h),40 ℃),实测的挥发时间为60.0 h; 以最大挥发时间计,有望显著缩短安全壳打压前的通风时间。研究结果对于缩短检修时间、提高机组运行效率具有重要指导意义。
Abstract:
It is difficult to dynamically determine the concentrations of volatile organic compounds(VOCs)in atmosphere of nuclear power containment, leading to a difficulty for evaluating the consequent fire disaster risk during pressure test. Six VOCs were tested qualitatively and quantitatively using an online system to obtain their dynamical volatilization curves and corresponding equations were fitted, and the volatilization rate equations were further numerically obtained. Setting 0.5 mm liquid membrane of each chemical during test, the volatilization periods of each chemical were calculated according to the volatilization rates determined in the volatilization rate at time 1 h and 2 h. The results suggest that as the most abundant chemical, Weidil cleaner takes23.46 h(r(t=1 h), 40 ℃)and33.31 h(r(t=2 h), 40 ℃)for volatilization according to the calculated results, and the tested volatilization period reaches 27.40 h; for screw cleaner, the calculated volatilization periods are49.59 h(r(t=1 h), 40 ℃)and69.43 h(r(t=1 h), 40 ℃), respectively, and the tested volatilization period reaches 60.00 h. According to the longest calculated and tested volatilization period, the ventilating time for pressure test of nuclear power containment can be obviously shortened. This approach is expected to optimize the pressure test time, and promote power plant efficiency.

参考文献/References:

[1] KONOVALOV I B, BEEKMANN M, BEREZIN E V, et al. The role of semi-volatile organic compounds in the mesoscale evolution of biomass burning aerosol: a modeling case study of the 2010 mega-fire event in Russia [J]. Atmospheric Chemistry and Physics, 2015, 15(23): 13269-13297.
[2] 陆靖洲. 人造板及木质地板甲醛和总挥发性有机物释放规律 [J]. 木材工业, 2016, 30(6): 27-30.
LU Jingzhou. Emission release courses of formaldehyde and total volatile organic compounds from wood-based panels and wooden flooring [J]. China Wood Industry, 2016, 30(6): 27-30.
[3] 陈晓珊. 挥发性污染物气液两相挥发规律及对应关系研究 [D]. 山东东营: 中国石油大学(华东), 2016: 1-2.
[4] 尚文寅, 张瑞新, 田川, 等. 建筑装修室内空气挥发性有机物污染规律研究 [J]. 工程建设与设计, 2015(4): 105-108.
SHANG Wenyin, ZHANG Ruixin, TIAN Chuan, et al. Research on volatile organic compounds pollution in indoor air in decorated buildings [J]. Construction & Design for Engineering, 2015(4): 105-108.
[5] OSMONT A, CHETEHOUNA K, CHAUMEIX N, et al. Thermodynamic data of known volatile organic compounds(VOCs)in rosmarinus officinalis: implications for forest fire modeling [J]. Computational and Theoretical Chemistry, 2015, 1073: 27-33.
[6] RENANE R, CHETEHOUNA K, SÉRO-GUILLAUME O, et al. Numerical simulations of laminar burning velocities of a major volatile organic compound involved in accelerating forest fires [J]. Applied Thermal Engineering, 2013, 51(1/2): 670-676.
[7] 赵健, 李少纯, 张波. 安全壳火灾监测系统研究与应用 [J]. 核标准计量与质量, 2017(1): 47-50.
[8] 翁文庆, 张可, 王定义, 等. 核电站安全壳打压试验中可燃物爆炸下限的实验研究 [J]. 西安交通大学学报, 2019, 53(9): 176-182.
WENG Wenqing, ZHANG Ke, WANG Dingyi, et al. Experimental research on lower flammability limits of the combustible vapors in containment test [J]. Journal of Xi'an Jiaotong University, 2019, 53(9): 176-182.
[9] HEYMES F, APRIN L, BONY A, et al. An experimental investigation of evaporation rates for different volatile organic compounds [J]. Process Safety Progress, 2013, 32(2): 193-198.
[10] 韩正, 王雷, 梁斌. 浅谈缩短核电站安全壳打压试验时间的可行性 [J]. 科技视界, 2016(10): 254-255.
[11] 费瑞银, 翁文庆, 喻奇, 等. 密闭空间内有机化学品挥发动力学在线检测系统 [J]. 西安交通大学学报, 2019, 53(12): 177-182.
FEI Ruiyin, WENG Wenqing, YU Qi, et al. An online system for determining the volatilization kinetics of organic compounds in an airtight chamber [J]. Journal of Xi'an Jiaotong University, 2019, 53(12): 177-182.
[12] 乔阳, 杜丽平, 肖冬光. 不同极性色谱柱在滇红香气成分分析中的对比研究 [J]. 茶叶科学, 2016, 36(1): 38-44.
QIAO Yang, DU Liping, XIAO Dongguang. A comparative study of different polarity chromatographic column in analysis of aroma components in black tea [J]. Journal of Tea Science, 2016, 36(1): 38-44.
[13] CAO Jianping, WESCHLER C J, LUO Jiajun, et al. Cm-history method, a novel approach to simultaneously measure source and sink parameters important for estimating indoor exposures to phthalates [J]. Environmental Science & Technology, 2016, 50(2): 825-834.
[14] XIONG Jianyin, CAO Jianping, ZHANG Yinping. Early stage C-history method: rapid and accurate determination of the key SVOC emission or sorption parameters of indoor materials [J]. Building and Environment, 2016, 95: 314-321.
[15] ZHANG Xu, CAO Jianping, WEI Jingya, et al. Improved C-history method for rapidly and accurately measuring the characteristic parameters of formaldehyde/VOCs emitted from building materials [J]. Building and Environment, 2018, 143: 570-578.
[16] 沈隽, 曹连英, 黄占华. 密闭小室测定建材有机挥发物散发特性的研究 [J]. 北京林业大学学报, 2011, 33(3): 111-114.
SHEN Jun, CAO Lianying, HUANG Zhanhua. Emission characteristics of volatile organic compounds of building materials in small airtight chamber [J]. Journal of Beijing Forestry University, 2011, 33(3): 111-114.
[17] 曾海东, 张寅平, 王庆苑, 等. 用密闭小室测定建材VOC散发特性 [J]. 清华大学学报(自然科学版), 2004, 44(6): 778-781.
ZENG Haidong, ZHANG Yinping, WANG Qingyuan, et al. Measuring VOC emission characteristics of building materials in an airtight chamber [J]. Journal of Tsinghua University(Science and Technology), 2004, 44(6): 778-781.

备注/Memo

备注/Memo:
收稿日期: 2020-02-18。作者简介: 翁文庆(1981—),男,高级工程师; 杨鸿辉(通信作者),男,副教授。基金项目: 陕西省重点研发计划资助项目(2018SF-372)。
更新日期/Last Update: 2020-08-10