[1]刘波涛,刘崇锐,吴九汇,等.低频大宽带声学超结构的多阶共振高效吸声机理[J].西安交通大学学报,2020,54(08):149-156.[doi:10.7652/xjtuxb202008019]
 LIU Botao,LIU Chongrui,WU Jiuhui,et al.Multi-Order Resonance and High-Efficiency Sound Absorption Mechanism of Low-Frequency Large-Band Acoustic Metamaterials[J].Journal of Xi'an Jiaotong University,2020,54(08):149-156.[doi:10.7652/xjtuxb202008019]
点击复制

低频大宽带声学超结构的多阶共振高效吸声机理
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第08期
页码:
149-156
栏目:
出版日期:
2020-08-10

文章信息/Info

Title:
Multi-Order Resonance and High-Efficiency Sound Absorption Mechanism of Low-Frequency Large-Band Acoustic Metamaterials
文章编号:
0253-987X(2020)08-0149-08
作者:
刘波涛12 刘崇锐2 吴九汇2 张奇志1
1.西安石油大学电子工程学院, 710065, 西安; 2.西安交通大学机械结构强度与振动国家重点实验室, 710049, 西安
Author(s):
LIU Botao12 LIU Chongrui2 WU Jiuhui2 ZHANG Qizhi1
1. School of Electronic Engineering, Xi'an Shiyou University, Xi'an 710065, China; 2. State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China
关键词:
多阶共振 超表面 低频宽带 多单元协同耦合
Keywords:
multi-order resonance metasurface low frequency broadband multi-element
分类号:
O422.4
DOI:
10.7652/xjtuxb202008019
文献标志码:
A
摘要:
针对传统吸声材料效率低、频带窄的不足,设计了一种多阶共振超表面。多阶共振超表面通过在共振腔内部插入一个或多个带有小孔的分隔板来构造,使其保持原吸声峰和结构尺寸不变情况下,在较宽频带内获得多个近乎完美的吸声峰,明显增加了吸声频带宽度。通过吸声系数和相对声阻抗率对迷宫二阶共振超表面的高效吸声特性进行分析,并研究了孔径变化对二阶共振超表面吸声特性的影响规律; 采用声电类比法推导出多阶共振超表面的等效声阻抗,并将二阶共振超表面等效成二自由度质量弹簧系统,通过系统固有频率和固有振型分量对多阶共振吸声机理进行深入分析。考虑到亥姆霍兹共振腔内空气的热黏性,在对多阶共振超表面的理论计算进行推导时,引入了等效密度和可压缩性的理论。通过对多单元耦合参数的精确平衡,设计了9个单元组成的低频宽带亚波长超表面吸收器,该超表面厚度为8 cm,在310~1 560 Hz的频带范围内具有连续优异的吸声特性,平均吸声系数高达90%以上。这项研究可为实现低频大宽带吸收提供一个新的思路,并在工程降噪中有潜在的应用前景。
Abstract:
Aiming at the shortcomings of low efficiency and narrow frequency band of traditional sound-absorbing materials, a multi-order resonance metasurface is designed. The multi-level resonant metasurface is constructed by inserting one or more partition plates with small holes inside the resonant cavity, so that while maintaining the original sound absorption peak and the same structure size, it can obtain multiple nearly perfect sound absorption peak to obviously widen the sound absorption bandwidth. The efficient absorption characteristics of the maze second-order resonance metasurface are analyzed by the sound absorption coefficient and the relative acoustic impedance ratio, and the effect of the aperture change on the sound absorption characteristics of the second-order resonance metasurface is investigated. The equivalent acoustic impedance of the first-order resonance metasurface, and the second-order resonance metasurface is equivalent to a two-degree-of-freedom mass spring system, and the in-depth analysis of the multi-order resonance sound absorption mechanism is performed via the system natural frequency and natural mode components. Taking thermal air viscosity in Helmholtz resonant cavity into account, the theory of equivalent density and compressibility is introduced during deducing the theoretical calculation of the multi-order resonance metasurface. Following accurate balancing the coupling parameters of multiple elements, a low-frequency broadband sub-wavelength super-surface absorber is designed, which is composed of nine units and has a thickness of 8 cm. This absorber is endowed with continuous and excellent sound absorption characteristics within the frequency band of 310-1 560 Hz, an average sound absorption coefficient reaches higher than 90%. This research provides a new idea for the realization of low-frequency large-bandwidth absorption, and has potential application prospects in engineering noise reduction.

参考文献/References:

[1] 吴九汇, 马富银, 张思文, 等. 声学超材料在低频减振降噪中的应用评述 [J]. 机械工程学报, 2016, 52(13): 68-78.
WU Jiuhui, MA Fuyin, ZHANG Siwen, et al. Application of acoustic metamaterials in low-frequency vibration and noise reduction [J]. Journal of Mechanical Engineering, 2016, 52(13): 68-78.
[2] 刘波涛, 张海龙, 王轲, 等. 声学黑洞轻质超结构的低频宽带高效隔声机理及实验研究 [J]. 西安交通大学学报, 2019, 53(10): 128-134.
LIU Botao, ZHANG Hailong, WANG Ke, et al. Acoustic black hole lightweight superstructure with low frequency broadband high efficiency sound insulation mechanism and experimental study [J]. Journal of Xi'an Jiaotong University, 2019, 53(10): 128-134.
[3] 吴九汇, 张思文, 沈礼. 螺旋局域共振单元声子晶体板结构的低频振动带隙特性研究 [J]. 机械工程学报, 2013, 49(10): 62-69.
WU Jiuhui, ZHANG Siwen, SHEN Li. Low-frequency vibration characteristics of periodic spiral resonators in phononic crystal plates [J]. Journal of Mechanical Engineering, 2013, 49(10): 62-69.
[4] GUAN Dong, WU Jiuhui, JING Li, et al. Application of a Helmholtz structure for low frequency noise reduction [J]. Noise Control Engineering Journal, 2015, 63(1): 20-35.
[5] GUAN Dong, WU Jiuhui, WU Jiangling, et al. Acoustic performance of aluminum foams with semiopen cells [J]. Applied Acoustics, 2015, 87: 103-108.
[6] JING Li, WU Jiuhui, GUAN Dong, et al. Multilayer-split-tube resonators with low-frequency band gaps in phononic crystals [J]. Journal of Applied Physics, 2014, 116(10): 103514.
[7] LU Kuan, WU Jiuhui, JING Li, et al. The two-degree-of-freedom local resonance elastic metamaterial plate with broadband low-frequency band gaps [J]. Journal of Physics: D, 2017, 50(9): 095104.
[8] LIU Chongrui, WU Jiuhui, LU Kuan, et al. Acoustical siphon effect for reducing the thickness in membrane-type metamaterials with low-frequency broadband absorption [J]. Applied Acoustics, 2019, 148: 1-8.
[9] 吴晓, 刘崇锐, 王轲, 等. 声学超结构低频宽带协同耦合高效吸声机理 [J]. 西安交通大学学报, 2019, 53(10): 122-127.
WU Xiao, LIU Chongrui, WANG Ke, et al. Low-frequency broadband synergistic coupling mechanism of acoustic metamaterials with high efficiency absorption [J]. Journal of Xi'an Jiaotong University, 2019, 53(10): 122-127.
[10] LEE S H, PARK C M, SEO Y M, et al. Composite acoustic medium with simultaneously negative density and modulus [J]. Physical Review Letters, 2010, 104(5): 054301.
[11] PARK C M, PARK J J, LEE S H, et al. Amplification of acoustic evanescent waves using metamaterial slabs [J]. Physical Review Letters, 2011, 107(19): 194301.
[12] MA Guangcong, YANG Min, XIAO Songwen, et al. Acoustic metasurface with hybrid resonances [J]. Nature Materials, 2014, 13(9): 873-878.
[13] CAI Xiaobing, GUO Qiuquan, HU Gengkai, et al. Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators [J]. Applied Physics Letters, 2014, 105(12): 121901.
[14] LIU Chongrui, WU Jiuhui, CHEN Xu, et al. A thin low-frequency broadband metasurface with multi-order sound absorption [J]. Journal of Physics: D, 2019, 52(10): 105302.
[15] LIU Chongrui, WU Jiuhui, MA Fuyin, et al. A thin multi-order Helmholtz metamaterial with perfect broadband acoustic absorption [J]. Applied Physics Express, 2019, 12(8): 084002.
[16] LIANG Zhixian, LI Jensen. Extreme acoustic metamaterial by coiling up space [J]. Physical Review Letters, 2012, 108(11): 114301.
[17] 唐昆. 超表面对声波波前的调控研究 [D]. 武汉: 武汉大学, 2016: 11-13.
[18] LI Yong, ASSOUAR B M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness [J]. Applied Physics Letters, 2016, 108(6): 063502.
[19] ZHANG Chi, HU Xinhua. Three-dimensional single-port labyrinthine acoustic metamaterial: perfect absorption with large bandwidth and tunability [J]. Physical Review Applied, 2016, 6(6): 064025.
[20] 马大猷. 微穿孔板吸声体的准确理论和设计 [J]. 声学学报, 1997, 22(5): 385-393.
MA Dayou. General theory and design of microperforated-panel absorbers [J]. Acta Acustica, 1997, 22(5): 385-393.
[21] MAA D Y. Potential of microperforated panel absorber [J]. The Journal of the Acoustical Society of America, 1998, 104(5): 2861-2866.
[22] STINSON M R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape [J]. The Journal of the Acoustical Society of America, 1991, 89(2): 550-558.

备注/Memo

备注/Memo:
收稿日期: 2020-04-02。作者简介: 刘波涛(1994—),男,硕士生; 吴九汇(通信作者),男,教授,博士生导师。基金项目: 国家自然科学基金资助项目(51675401)。
更新日期/Last Update: 2020-08-10