[1]左曙光,潘健,吴旭东,等.考虑动圈偏心的电动振动台等效电磁力计算方法[J].西安交通大学学报,2020,54(08):132-139.[doi:10.7652/xjtuxb202008017]
 ZUO Shuguang,PAN Jian,WU Xudong,et al.A Calculation Method of Equivalent Electromagnetic Force for Electrodynamic Shakers Considering Moving Coil's Eccentricity[J].Journal of Xi'an Jiaotong University,2020,54(08):132-139.[doi:10.7652/xjtuxb202008017]
点击复制

考虑动圈偏心的电动振动台等效电磁力计算方法
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第08期
页码:
132-139
栏目:
出版日期:
2020-08-10

文章信息/Info

Title:
A Calculation Method of Equivalent Electromagnetic Force for Electrodynamic Shakers Considering Moving Coil's Eccentricity
文章编号:
0253-987X(2020)08-0132-08
作者:
左曙光 潘健 吴旭东 冯朝阳
同济大学汽车学院, 201804, 上海
Author(s):
ZUO Shuguang PAN Jian WU Xudong FENG Zhaoyang
School of Automotive, Tongji University, Shanghai 201804, China
关键词:
电动振动台 等效电磁力 偏心 计算方法 正交试验设计
Keywords:
electrodynamic shaker equivalent electromagnetic force eccentricity
分类号:
TM153; TH87
DOI:
10.7652/xjtuxb202008017
文献标志码:
A
摘要:
为了反映动圈激励电磁力对偏载工况下电动振动台横向振动的影响,提出了一种考虑动圈偏心影响的电动振动台等效电磁力计算方法。综合选取动圈通电电流、垂向位置、翻转偏心角度、径向平移偏心距及方向等5个因素,通过求取径向平移偏心距极限及假设虚拟偏心距进行变量代换,解决了现有正交试验设计方法难以应用于多个因素之间存在取值相互约束情况的问题。通过电磁有限元仿真获得了与动圈分布电磁力等效的集中电磁力样本,采用神经网络方法进行样本拟合获得了动圈全运动工况等效电磁力。仿真结果表明:径向等效电磁力主要随翻转偏心角度的增加而增加,且在大电流工况增加更迅速; 采用所提方法获得的等效电磁力相对误差均在10%以内,可在满足工程误差要求的同时快速实时获得动圈全运动工况等效电磁力,解决了由有限元及精确解析方法计算等效电磁力速度慢所导致的无法进行电动振动台电磁-结构双向耦合仿真的问题。该方法也可应用于其他相似的运动系统受力计算问题。
Abstract:
A calculation method of equivalent electromagnetic force considering moving coil's eccentricity is proposed to reflect the influences of the moving coil's electromagnetic forces on the lateral vibration of the electrodynamic shaker under offset loading conditions. Five factors including the moving coil's current, vertical position, flipping eccentricity angle, radial translating eccentricity distance and direction are considered. The problem that it is difficult to apply the existing orthogonal test design method to the situation with a mutual constraint among multiple factors' values is solved by calculating the radial eccentricity distance limit and assuming a virtual eccentricity distance. The concentrated electromagnetic force samples equivalent to the distributed electromagnetic forces of the moving coil are obtained through an electromagnetic finite element simulation. A neural network method is used to fit the samples and the equivalent electromagnetic forces in full moving conditions are obtained. Simulation results show that the radial equivalent electromagnetic force mainly increases with the increase of flipping eccentricity angle, especially increases rapidly at the high current condition. The relative errors of the equivalent electromagnetic forces obtained by the proposed method are within 10%. The equivalent electromagnetic forces in full moving conditions can be effectively obtained in real time while meeting the engineering requirement of calculation error. The problem that the electrodynamic shaker's electromagnetic-structure bidirectional coupling simulation can not be carried out due to the slow speed of the finite element method and the exact analytical method to calculate the equivalent electromagnetic force is well solved. The proposed method can also be applied to the calculation of forces on other similar moving systems.

参考文献/References:

[1] MACHADO M R, APPERT A, KHALIJ L. Spectral formulated modelling of an electrodynamic shaker [J]. Mechanics Research Communications, 2019, 97: 70-78.
[2] WAIMER S, MANZATO S, PEETERS B, et al. Modelling and simulation of a closed-loop electrodynamic shaker and test structure model for spacecraft vibration testing [J]. Advances in Aircraft and Spacecraft Science, 2018, 5(2): 205-223.
[3] HOFFAIT S, MARIN F, SIMON D, et al. Measured-based shaker model to virtually simulate vibration sine test [EB/OL]. [2019-09-16]. https:∥www. sciencedirect.com/science/article/pii/s2351988616300 057.
[4] SEBASTIEN H, FREDERIC M, DANIEL S, et al. Virtual shaker testing at V2i: measured-based shaker model and industrial test case [C]∥27th International Conference on Noise and Vibration Engineering. Leuven, Belgium: KU Leuven, 2016: 1013-1026.
[5] 孟繁莹. 大型电动振动台动力学分析与数值模拟研究 [D]. 北京: 北京工业大学, 2013: 31-32.
[6] JONATHAN M, KRISTOF H. Two-port modeling and simulation of an electrodynamic shaker for virtual shaker testing applications [J]. Journal of Sound and Vibration, 2019, 460: 114835.
[7] SARASWAT A, TIWARI N. Modeling and study of nonlinear effects in electrodynamic shakers [J]. Mechanical Systems and Signal Processing, 2017, 85: 162-176.
[8] JONATHAN M, KRISTOF H. Virtual shaker modeling and simulation, parameters estimation of a high damped electrodynamic shaker [J]. International Journal of Mechanical Sciences, 2019, 151: 375-384.
[9] 刘源, 董立珉, 孔宪仁, 等. 飞行器虚拟振动试验平台构建 [J]. 光学精密工程, 2013, 21(5): 1258-1264.
LIU Yuan, DONG Limin, KONG Xianren, et al. Construction of virtual vibration testing platform for spacecraft [J]. Optics and Precision Engineering, 2013, 21(5): 1258-1264.
[10] 左曙光, 黄荣奎, 冯朝阳, 等. 考虑非线性电磁分布力的虚拟电动振动系统建模 [J]. 振动与冲击, 2019, 38(2): 152-158.
ZUO Shuguang, HUANG Rongkui, FENG Zhaoyang, et al. Construction of a virtual electric vibration system considering the nonlinearity of electromagnetic force [J]. Journal of Vibration and Shock, 2019, 38(2): 152-158.
[11] WANG J, ZHU J G. A simple method for performance prediction of permanent magnet eddy current couplings using a new magnetic equivalent circuit model [J]. IEEE Transactions on Industrial Electronics, 2018, 65(3): 2487-2495.
[12] 刘强, 赵勇, 曹建树, 等. 新型微框架磁悬浮飞轮用洛伦兹力磁轴承 [J]. 宇航学报, 2017, 38(5): 481-489.
LIU Qiang, ZHAO Yong, CAO Jianshu, et al. Lorentz magnetic bearing for novel vernier gimballing magnetically suspended flywheel [J]. Journal of Astronautics, 2017, 38(5): 481-489.
[13] 吴承喜. 基于电磁-结构耦合的电动振动系统建模与分析 [D]. 上海: 同济大学, 2018: 23-28.
[14] 钟鸿敏, 左曙光, 吴旭东, 等. 电励磁爪极发电机气隙磁场与径向电磁力的解析计算模型 [J]. 电工技术学报, 2017, 32(7): 49-58.
ZHONG Hongmin, ZUO Shuguang, WU Xudong, et al. Analytical calculation model of air-gap magnetic field and radial electromagnetic force of electric excitation claw-pole generator [J]. Transactions of China Electrotechnical Society, 2017, 32(7): 49-58.
[15] JABBARI A. Analytical modeling of magnetic field distribution in multiphase H-type stator core permanent magnet flux switching machines [J]. Iranian Journal of Science and Technology: Transactions of Electrical Engineering, 2019, 43: 389-401.
[16] JING L B, HUANG Z X, GONG J. Analytical calculation of magnetic field distribution in the consequent-pole bearingless PM motor with rotor eccentricity [J]. Progress in Electromagnetics Research M, 2019, 81: 137-147.
[17] 左曙光, 刘洋, 邓文哲. 轴向磁通轮毂电机电磁力波灵敏度分析和优化 [J]. 电工技术学报, 2018, 33(11): 2423-2430.
ZUO Shugang, LIU Yang, DENG Wenzhe. Sensitivity analysis and optimization of electromagnetic force wave of an axial-flux in-wheel motor [J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2423-2430.
[18] ZUO S G, LI D Q, MAO Y, et al. Longitudinal vibration analysis and suppression of electric wheel system driven by in-wheel motor considering unbalanced magnetic pull [J]. Journal of Automobile Engineering, 2019, 233(11): 2729-2745.
[19] NIU X X, YANG C L, WANG H C, et al. Investigation of ANN and SVM based on limited samples for performance and emissions prediction of a CRDI-assisted marine diesel engine [J]. Applied Thermal Engineering, 2017, 111: 1353-1364.
[20] TAFARROJ M M, KOLAHAN F. A comparative study on the performance of artificial neural networks and regression models in modeling the heat source model parameters in GTA welding [J]. Fusion Engineering and Design, 2018, 131: 111-118.
[21] 叶建雄, 李志刚, WU J, 等. 基于SVR模型的水下焊接最佳工艺 [J]. 焊接学报, 2017, 38(12): 69-72, 94.
YE Jianxiong, LI Zhigang, WU J, et al. Optimal underwater welding process based on SVR model [J]. Transactions of the China Welding Institution, 2017, 38(12): 69-72, 94.
[22] 王枫, 陈征, 李花, 等. 采用多体动力学的压缩机曲轴结构优化 [J]. 西安交通大学学报, 2017, 51(3): 7-13.
WANG Feng, CHEN Zheng, LI Hua, et al. Optimization for compressor crankshaft by multi-body dynamics analysis method [J]. Journal of Xi'an Jiaotong University, 2017, 51(3): 7-13.
[23] 梁昭磊. 受限条件下的试验设计研究 [D]. 天津: 天津大学, 2009: 38-40.
[24] 陆宜清. 概率论与数理统计 [M]. 上海: 上海科学技术出版社, 2019: 136-137.

备注/Memo

备注/Memo:
收稿日期: 2019-11-03。作者简介: 左曙光(1968—),男,教授,博士生导师; 吴旭东(通信作者),男,副教授,博士生导师。基金项目: 国家重点研发计划重点专项资助项目(2017YFB0103103)。
更新日期/Last Update: 2020-08-10