[1]常龙飞,牛清正,宋伟,等.压阻式柔性应变传感纤维的手指姿态识别装置[J].西安交通大学学报,2020,54(08):116-123.[doi:10.7652/xjtuxb202008015]
 CHANG Longfei,NIU Qingzheng,SONG Wei,et al.A Finger Gesture Recognition Device with Piezoresistive Flexible Strain Sensing Fiber[J].Journal of Xi'an Jiaotong University,2020,54(08):116-123.[doi:10.7652/xjtuxb202008015]
点击复制

压阻式柔性应变传感纤维的手指姿态识别装置
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第08期
页码:
116-123
栏目:
出版日期:
2020-08-10

文章信息/Info

Title:
A Finger Gesture Recognition Device with Piezoresistive Flexible Strain Sensing Fiber
文章编号:
0253-987X(2020)08-0116-08
作者:
常龙飞12 牛清正1 宋伟1 唐振华3 何青松4 胡佳佳1 胡颖1
1.合肥工业大学航空结构件成形制造与装备安徽省重点实验室, 230009, 合肥; 2.合肥工业大学先进功能材料与器件安徽省重点实验室, 230009, 合肥; 3.西安交通大学机械工程学院, 710049, 西安; 4.南京航空航天大学机电学院, 210016, 南京
Author(s):
CHANG Longfei12 NIU Qingzheng1 SONG Wei1 TANG Zhenhua3 HE Qingsong4 HU Jiajia1 HU Ying1
1. Auhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology, Hefei 230009, China; 2. Anhui Province Key Lab of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 23
关键词:
手指姿态识别装置 可穿戴织物 柔性应变传感纤维 嵌入式控制系统
Keywords:
flexible strain sensing fiber finger gesture recognition device wearable fabric embedded control system
分类号:
TP274
DOI:
10.7652/xjtuxb202008015
文献标志码:
A
摘要:
针对传统应变传感器柔顺性受限、与织物结合性差的问题,设计了一套可穿戴织物手指姿态识别装置。该装置的传感器为弹性硅橡胶和多壁碳纳米管复合的压阻式芯-鞘结构传感纤维柔性应变传感器,采用同轴湿法纺丝工艺制备,具有很好的可编织性,拉伸应变可达300%,响应时间少于200 ms,可将其编织到织物手套的手指关节处,用于感知手指姿态; 该装置的嵌入式控制系统采用基于STM32F103C8T6主控芯片的单片机,用于采集处理手指姿态传感信号; 该装置的识别显示系统采用发光二极管、无源蜂鸣器和有机发光显示屏等功能器件,用于手指姿态的识别显示。实验结果表明,与现有手指姿态识别装置相比,该装置将柔性应变传感纤维、常规织物、单片机和功能器件集成在一起,具有舒适的可穿戴性,实现了呼吸灯、数字音乐和手语识别等移动便携式控制应用。
Abstract:
A wearable fabric device with the function of finger-gesture recognition is designed to solve the problem of the limited flexibility and poor combination with fabrics of the traditional strain sensors. Sensors of the device are a kind of piezoresistive core-sheath sensing fiber composed of elastic silicon rubber and multi-wall carbon nanotubes. They are prepared by coaxial wet spinning process, and have good stitchability, high tensile strain up to 300% and fast response time less than 200 ms. They can be knitted into the finger joints of fabric gloves to sense the finger gestures. The embedded control system of the device is designed with a Single-Chip Microcomputer based on the STM32F103C8T6 main control chip to collect and to process finger gestures sensing signal. The recognition and display of finger gestures are realized with functional devices including light emitting diode, passive buzzer, and organic light-emitting display. Experimental results and comparisons with the existing finger gesture recognition device show that the proposed wearable fabric device has better integration among the sensing fiber material, conventional fabric, single-chip microcomputer and functional devices, comfortable wearability, and realizes wearable mobile control of breathing lamp, digital music and sign language recognition.

参考文献/References:

[1] 彭军, 李津, 李伟, 等. 柔性可拉伸应变传感器研究进展与应用 [J]. 化工新型材料, 2018, 46(11): 45-49.
PENG Jun, LI Jin, LI Wei, et al. Research progress and application of flexible tensile strain sensors [J]. Advanced Chemical Materials, 2018, 46(11): 45-49.
[2] 钱鑫, 苏萌, 李风煜, 等. 柔性可穿戴电子传感器研究进展 [J]. 化学学报, 2016, 74(7): 565-575.
QIN Xin, SU Meng, LI Fengyu, et al. Research progress in flexible wearable electronic sensors [J]. Acta Chimica Sinica, 2016, 74(7): 565-575.
[3] HAN S T, PENG H, SUN Q, et al. An overview of the development of flexible sensors [J]. Advanced Materials, 2017, 29: 1700375.
[4] ZHAO Jingjing, HAN Song, YANG Ying, et al. Passive and space-discriminative ionic sensors based on durable nanocomposite electrodes toward sign language recognition [J]. ACS Nano, 2017, 11(9): 8590-8599.
[5] ZHONG J, ZHONG Q, HU Q, et al. Stretchable self-powered fiber-based strain sensor [J]. Advanced Functional Materials, 2015, 25(12): 1798-1803.
[6] LIPOMI D J, VOSGUERITCHIAN M, TEE B C K, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes [J]. Nature Nanotechnology, 2011, 6(12): 788-792.
[7] CAI S, HUANG T, CHEN H, et al. Wet-spinning of ternary synergistic coaxial fibers for high performance yarn supercapacitors [J]. Journal of Materials Chemistry: A, 2017, 43(5): 22489-22494.
[8] 赵木森, 于海波, 孙丽娜, 等. 基于石墨烯/PEDOT: PSS复合材料制备的可穿戴柔性传感器 [J]. 中国科学: 技术科学, 2019, 49(7): 851-860.
ZHAO Musen, YU Haibo, SUN Lina, et al. Wearable flexible sensors based on graphene/PEDOT: PSS composites [J]. Scientia Science: Technologica, 2019, 49(7): 851-860.
[9] 刘志文, 崔旭, 徐礼胜, 等. 聚合物基石墨烯复合材料在柔性传感器领域的研究进展 [J]. 航空制造技术, 2019, 62(15): 78-87.
LIU Zhiwen, CUI Xu, XU Lisheng, et al. Research progress of polymer based graphene composites in the field of flexible sensors [J]. Aviation Manufacturing Technology, 2019, 62(15): 78-87.
[10] CHEN S, LOU Z, CHEN D, et al. Wearable electronics: polymer-enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves [J]. Advanced Materials Technologies, 2016, 1(7): 1600136.
[11] LEE S W, PARK J J, PARK B H, et al. Enhanced sensitivity of patterned graphene strain sensors used for monitoring subtle human body motions [J]. ACS Applied Materials and Interfaces, 2017, 9(12): 11176-11183.
[12] RYU S, LEE P, CHOU J B, et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion [J]. ACS Nano, 2015, 9(6): 5929.
[13] WANG Xiaona, QIU Yunfeng, CAO Wenwu, et al. Highly stretchable and conductive core-sheath CVD graphene fibers and their applications in safe strain sensors [J]. Chemistry of Materials, 2015, 27(20): 6969-6975.
[14] CHENG Yin, WANG Ranran, SUN Jing, et al. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion [J]. Advanced Materials, 2015, 27(45): 7365-7371.
[15] PARK J J, HYUN W J, MUN S C, et al. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring [J]. ACS Applied Materials and Interfaces, 2015, 7(11): 6317-6324.
[16] YAMADA T, HAYAMIZU Y, YAMAMOTO Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection [J]. Nature Nanotechnology, 2011, 6(5): 296-301.
[17] ROBERTO J, POTSCHKE P, BRUNIG H, et al. Strain sensing, electrical and mechanical properties of polycarbonate/multiwall carbon nanotube monofilament fibers fabricated by melt spinning [J]. Polymer, 2016, 82: 181-189.
[18] TANG Zhenhua, JIA Shuhai, WANG Fei, et al. Highly stretchable core-sheath fibers via wet-spinning for wearable strainsSensors [J]. ACS Applied Materials and Interfaces, 2018, 10(7): 6624-6635.
[19] LIN Zhiming, CHEN Jun, LI Xiaoshi, et al. Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring [J]. ACS Nano, 2017, 11(9): 8830-8837.
[20] CHO D, PARK J, KIM J, et al. Three-dimensionally continuous conductive nanostructure for highly sensitive and stretchable strain sensor [J]. ACS Applied Materials and Interfaces, 2017, 9(11): 17369-17378.
[本刊相关文献链接]
李敏,何博,徐光华,等.柔性可穿戴的腕关节运动角度传感器.2018,52(12):32-37.[doi:10.7652/xjtuxb201812005]
滕千礼,A.ESMAEILI KELISHOMI,蔡忠闽.采用运动传感器的人体运动识别深度模型.2018,52(8):60-66.[doi:10.7652/xjtuxb201808010]
段鹏松,周志一,王超,等.WiNet:一种适用于无线感知场景的步态识别模型.2020,54(7):187-195.[doi:10.7652/xjtuxb202007022]
宋雨键,崔荣洪,刘凯,等.PVD薄膜传感器的振动疲劳裂纹监测可行性研究.2019,53(11):156.[doi:10.7652/xjtuxb 201911022]
刘凯,崔荣洪,侯波,等.薄膜传感器监测强化结构裂纹的可行性研究.2018,52(7):139-145.[doi:10.7652/xjtuxb201807 020]

备注/Memo

备注/Memo:
收稿日期: 2019-10-29。作者简介: 常龙飞(1988—),女,副研究员,硕士生导师; 胡颖(通信作者),男,研究员。基金项目: 国家自然科学基金青年基金资助项目(51605131); 国家自然科学基金资助项目(11674354)。
更新日期/Last Update: 2020-08-10