[1]王欢,王常,吴海洋,等.不同结构石墨烯纳米带吸附NH3的第一性原理研究[J].西安交通大学学报,2020,54(08):107-115.[doi:10.7652/xjtuxb202008014]
 WANG Huan,WANG Chang,WU Haiyang,et al.A First Principle Study on Adsorption of NH3 by Graphene Nanoribbons with Different Structure[J].Journal of Xi'an Jiaotong University,2020,54(08):107-115.[doi:10.7652/xjtuxb202008014]
点击复制

不同结构石墨烯纳米带吸附NH3的第一性原理研究
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第08期
页码:
107-115
栏目:
出版日期:
2020-08-10

文章信息/Info

Title:
A First Principle Study on Adsorption of NH3 by Graphene Nanoribbons with Different Structure
文章编号:
0253-987X(2020)08-0107-09
作者:
王欢 王常 吴海洋 李昕 刘卫华 韩传余 王小力
西安交通大学电子与信息学部, 710049, 西安
Author(s):
WANG Huan WANG Chang WU Haiyang LI Xin LIU Weihua HAN Chuanyu WANG Xiaoli
Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
关键词:
石墨烯纳米带 第一性原理 传感性能 吸附能 灵敏度
Keywords:
graphene nanoribbons first principle sensing performance adsorption energy
分类号:
TP277
DOI:
10.7652/xjtuxb202008014
文献标志码:
A
摘要:
为了进一步提高基于石墨烯的气敏传感器对NH3的传感性能,采用第一性原理方法,研究了NH3与不同结构扶手椅型石墨烯纳米带(AGNR)的相互作用,通过计算吸附能、电荷转移和灵敏度,分析NH3在单层AGNR(MAGNR)结构上的最稳定吸附位置,以及3种含氧官能团(羟基、羧基、环氧基)的修饰对传感性能的影响。在此基础上,研究MAGNR结构、双层AGNR(BAGNR)结构、含氧官能团修饰AGNR(MGO)结构以及MAGNR与MGO堆叠结构(MGO-MAGNR)对NH3的传感性能。结果表明:NH3在MAGNR结构碳六环的中心位置吸附最稳定,吸附能(-0.36 eV)和电荷转移量(-4×10-21 C)最小; 羟基、羧基、环氧基的修饰会使MAGNR结构对NH3的吸附能分别减小0.39、0.21和0.19 eV,传感性能增强; 相对于MAGNR结构,BAGNR结构对NH3的灵敏度始终小于0.1,传感性能降低; 相对于MAGNR、MGO、BAGNR这3种结构,NH3在MGO-MAGNR结构上的吸附能更小,传感性能更好。
Abstract:
The interaction between NH3 and armchair graphene nanoribbons(AGNR)with different structures is studied by the first principle method to further improve the sensing performance of graphene-based gas sensors to NH3. The most stable adsorption position of NH3 on the monolayer-AGNR(MAGNR)structure and the effects of the modification to three oxyfunctional groups(hydroxyl, carboxyl, epoxy)on the sensing performance are analyzed by calculating the adsorption energy, charge transfer and sensitivity. On this basis, the sensing performances of MAGNR structure, bilayer AGNR structure(BAGNR), MAGNR structure modified by oxyfunctional groups(MGO)and MGO, MAGNR stacking structure(MGO-MAGNR)to NH3 are studied. Results show that the adsorption of NH3 is the most stable, and the adsorption energy(-0.36 eV)and the charge transfer(-4×10-21 C)are respectively the smallest at the center of the carbon hexagon on the MAGNR structure. Modifications of hydroxyl、carboxyl and epoxy reduce the adsorption energy of MAGNR structure to NH3 by 0.39 eV, 0.21 eV and 0.19 eV, respectively, and enhance the sensing performance. Compared with the MAGNR structure, the sensitivity of the BAGNR structure to NH3 is always less than 0.1, and the sensing performance is reduced. Compared with the three structures of MAGNR、MGO and BAGNR, NH3 has a smaller adsorption energy on the MGO-MAGNR structure, and better sensing performance.

参考文献/References:

[1] 郑建旭, 管永川, 冉慧丽, 等. 氨气传感器的应用和研究进展 [J]. 化工新型材料, 2010, 38(2): 6-8, 22.
ZHENG Jianxu, GUAN Yongchuan, RAN Huili, et al. Application and research of ammonia sensor [J]. New Chemical Material, 2010, 38(2): 6-8, 22.
[2] STOKSTAD E. Ammonia pollution from farming may exact hefty health costs [J]. Science, 2014, 343(6168): 238-238.
[3] CHAN C K, YAO X. Air pollution in mega cities in China [J]. Atmospheric Environment, 2008, 42(1): 1-42.
[4] 孙墨杰, 姚杰, 王冬. 氨气传感器的研究 [J]. 硅酸盐通报, 2015, 34(S1): 136-139.
SUN Mojie, YAO Jie, WANG Dong. Research on ammonia sensors [J]. Bulletin of the Chinese Ceramic Society, 2015, 34(S1): 136-139.
[5] SCHEDIN F, GEIM A K, MOROZOV S V, et al. Detection of individual gas molecules adsorbed on graphene [J]. Nature Materials, 2007, 6(9): 652-655.
[6] BASU S, BHATTACHARYYA P. Recent developments on graphene and graphene oxide based solid state gas sensors [J]. Sensors & Actuators: B Chemical, 2012, 173: 1-21.
[7] YAVARI F, CASTILLO E, GULLAPALLI H, et al. High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene [J]. Applied Physics Letters, 2012, 100(20): 203120.
[8] LEENAERTS O, RTOENS B, PEETERS F M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study [J]. Physical Review: B, 2008, 77(12): 125416.
[9] ZHANG Y H, CHEN Y B, ZHOU K G, et al. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study [J]. Nanotechnology, 2009, 20(18): 185504.
[10] BOUKHVALOV D W, DREYER D R, BIELAWSKI C W, et al. A computational investigation of the catalytic properties of graphene oxide: exploring mechanisms by using DFT methods [J]. ChemCatChem, 2012, 4(11): 1686-1686.
[11] LÜ Ruitao, CHEN Gugang, LI Qing, et al. Ultrasensitive gas detection of large-area boron-doped graphene [EB/OL]. [2019-10-11]. https:∥www.ncbi.nlm. nih.gov/pmc/articles/PMC4664358/pdf/pnas.201505 993.pdf.
[12] MORTAZAVI ZANJANI S M, SADEGHI M M, HOLT M, et al. Enhanced sensitivity of graphene ammonia gas sensors using molecular doping [J]. Applied Physics Letters, 2016, 108(3): 033106.
[13] 邱海峰, 赵丹, 腾建强, 等. 一种高灵敏度氧化石墨烯气敏传感器的构造方法及性能研究 [J]. 西安交通大学学报, 2018, 52(10): 95-101.
QIU Haifeng, ZHAO Dan, TENG Jianqiang, et al. Study on the construction method and performance of a high sensitivity graphene oxide gas sensor [J]. Journal of Xi'an Jiaotong University, 2018, 52(10): 95-101.
[14] 欧阳方平, 徐慧, 李明君, 等. Armchair型石墨纳米带的电子结构和输运性质 [J]. 物理化学学报, 2008, 24(2): 328-332.
OUYANG Fangping, XU Hui, LI Mingjun, et al, Electronic structure and transport properties of armchair graphite nanoribbons [J]. Journal of Physical Chemistry, 2008, 24(2): 328-332.
[15] LI Z, QIAN H, WU J, et al. Role of symmetry in the transport properties of graphene nanoribbons under bias [J]. Physical Review Letters, 2008, 100(20): 231-234.
[16] GHADIRY M, SMAIL R, NARAGHI B, et al. A new approach to model sensitivity of graphene-based gas sensors [J]. Semiconductor Science and Technology, 2015, 30(4): 045012.
[17] LERF A, HE H, FORSTER M, et al. Structure of graphite oxide revisited [J]. Journal of Physical Chemistry: B, 1998, 102(23): 4477-4482.
[18] HE H, KLINOWSKI J, FORSTER M, et al. A new structural model for graphite oxide [J]. Chemical Physics Letters, 1998, 287(1): 53-56.
[19] PEI S, CHENG H M. The reduction of graphene oxide [J]. Carbon, 2012, 50(9): 3210-3228.
[20] SONG H, LI X, CUI P, et al. Sensitivity investigation for the dependence of monolayer and stacking graphene NH3, gas sensor [J]. Diamond and Related Materials, 2017, 73: 56-61.
[21] WU H, BU X, DENG M, et al. A gas sensing channel composited with pristine and oxygen plasma-treated graphene [J]. Sensors, 2019, 19(3): 625.

相似文献/References:

[1]李昕,张永,殷德民,等.采用紧束缚格林函数法研究原子吸附石墨烯纳米带电子输运[J].西安交通大学学报,2015,49(02):037.[doi:10.7652/xjtuxb201502007]
 LI Xin,ZHANG Yong,YIN Demin,et al.Electronic Transport Properties of Atom Adsorption Graphene Nanoribbon Devices Based on Tight Binding Green’s Function Method[J].Journal of Xi'an Jiaotong University,2015,49(08):037.[doi:10.7652/xjtuxb201502007]

备注/Memo

备注/Memo:
收稿日期: 2020-01-07。作者简介: 王欢(1996—),女,硕士生; 李昕(通信作者),女,教授,博士生导师。基金项目: 国家自然科学基金资助项目(51625504,61671368)。
更新日期/Last Update: 2020-08-10