[1]田鹏飞,杨树明,吴孜越,等.结合精度补偿的机器人优化手眼标定方法[J].西安交通大学学报,2020,54(08):099-106.[doi:10.7652/xjtuxb202008013]
 TIAN Pengfei,YANG Shuming,WU Ziyue,et al.An Optimal Hand-Eye Calibration Method for Robots Based on Precision Compensation[J].Journal of Xi'an Jiaotong University,2020,54(08):099-106.[doi:10.7652/xjtuxb202008013]
点击复制

结合精度补偿的机器人优化手眼标定方法
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第08期
页码:
099-106
栏目:
出版日期:
2020-08-10

文章信息/Info

Title:
An Optimal Hand-Eye Calibration Method for Robots Based on Precision Compensation
文章编号:
0253-987X(2020)08-0099-08
作者:
田鹏飞1 杨树明1 吴孜越2 李湛3 胡鹏宇1 瞿兴1
1.西安交通大学机械制造系统工程国家重点实验室, 710049, 西安; 2.河南科技大学机电学院, 471023, 河南洛阳; 3.固高科技(深圳)有限公司, 518057, 广东深圳
Author(s):
TIAN Pengfei1 YANG Shuming1 WU Ziyue2 LI Zhan3 HU Pengyu1 QU Xing1
1. State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China; 2. School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, China; 3. Googol Technology(Shenzhen)L
关键词:
机器人 优化 重投影误差 模型精度补偿
Keywords:
robot optimization reprojection error model accuracy compensation
分类号:
TP249
DOI:
10.7652/xjtuxb202008013
文献标志码:
A
摘要:
为了解决制造现场机器人高精度视觉测量定位的问题提出了一种结合模型精度补偿的机器人方位与手眼关系同步标定方法。该方法首先将视觉系统与机器人之间的位姿关系即手眼关系以及标定板与机器人坐标系的空间转换关系作为待优化求解对象,用齐次坐标矩阵分别表示机器人运动学正解以及视觉系统与标定板之间的位姿关系,进而构建闭环的机器人手眼关系优化方程; 然后,使用三维旋转群表示旋转矩阵,建立了标定模型方程,用非线性全局优化的方式同步得到标定方程中矩阵的旋转和平移初始解,采用最小化相机的重投影误差提高了标定精度; 最后,使用机器人运动学标定设备提升了本体的模型精度,再进行视觉标定得到了更准确的标定结果。实验结果表明:该标定方法只需提前示教若干点即可自动完成,操作简易高效; 在补偿了机器人本体的臂长和关节零位误差后,算法精度从0.15 mm提升至0.10 mm。与经典的手眼标定方法相比,所提方法在不同测试数据集下的标定精度和稳定性均最优。
Abstract:
A simultaneous calibration method based on Lie group theory and iterative optimization for robot orientation and hand-eye calibration is proposed to solve the problem of high precision vision measurement and position for industrial manufacturing field robots. The method uses optimization after enhancing the accuracy of robot. Firstly, the pose relationships between the vision system and the robot, that is, the hand-eye relationship and the spatial conversion relationship between calibration plate and robot coordinate system, are taken as the objects for optimization. The forward kinematics solution of the robot and the pose relationship between the vision system and the calibration plate are represented by a homogeneous coordinate matrix, and then a closed-loop optimization equation of the hand-eye relationship of the robot is constructed. Furthermore, a three-dimensional rotation group is used to represent a rotation matrix and to establish a calibration model equation. Then the nonlinear global optimization is used to simultaneously obtain initial solutions of rotation and translation of the matrix in the calibration equation. The calibration accuracy is improved by minimizing the reprojection error of the camera. Finally, the model accuracy of the robot is improved by using the robot kinematics calibration equipment, and more accurate calibration result is achieved by carrying out visual calibration. Experimental results show that the calibration method can be completed automatically by teaching a few points in advance, and the operation is simple and efficient. Precision analysis shows that the accuracy of the visual calibration algorithm is significantly improved from 0.15 mm to 0.1 mm by compensating the arm length and joint zero error of the robot body. Comparisons with the classical hand-eye calibration methods show that the proposed algorithm has the best calibration accuracy and stability in different test data sets.

参考文献/References:

[1] TSAI R Y, LENZ R K. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration [J]. IEEE Transactions on Robotics and Automation, 2002, 5(3): 345-358.
[2] ZHUANG H, ROTH Z S, SUDHAKAR R. Simultaneous robot/world and tool/flange calibration by solving homogeneous transformation equations of the form AX=YB [J]. IEEE Transactions on Robotics and Automation, 2002, 10(4): 549-554.
[3] SHAH M. Solving the robot-world/hand-eye calibration problem using the Kronecker product [J]. Journal of Mechanisms and Robotics, 2013, 5(3): 031007
[4] HELLER J, HENRION D, PAJDLA T. Hand-eye and robot-world calibration by global polynomial optimization [C]∥ Proceedings of the 2014 IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2014; 3157-3164.
[5] LI A, WANG L, WU D. Simultaneous robot-world and hand-eye calibration using dual-quaternions and Kronecker product [J]. International Journal of Physical Sciences, 2010, 5(10): 1530-1536.
[6] TABB A, KHALIL M, YOUSEF A. Parameterizations for reducing camera reprojection error for robot-world hand-eye calibration [C]∥ 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: 2015: 3030-3037.
[7] TABB A, YOUSEF K M A. Solving the robot-world hand-eye(s)calibration problem with iterative methods [J]. Machine Vision & Applications, 2017, 28(5/6): 1-22.
[8] LI H, MA Q, WANG T, et al. Simultaneous hand-eye and robot-world calibration by solving the AX=YB problem without correspondence [J]. IEEE Robotics and Automation Letters, 2016, 1(1): 145-152.
[9] LI W, DONG M, LU N, et al. Simultaneous robot-world hand-eye calibration without a calibration object [J]. Sensors, 2018, 18(11): 3949.
[10] 李巍, 吕乃光, 董明利, 等. 基于对偶四元数的机器人方位与手眼关系同时标定方法 [J]. 机器人, 2018, 40(3): 47-54.
LI Wei, LÜ Naiguang, DONG Mingli, et al. Simultaneous robot-world/hand-eye calibration using dual quaternion [J]. Robot, 2018, 40(3): 47-54.
[11] 张铁, 叶景杨, 刘晓刚. 面向机器人砂带打磨的加权手眼标定算法 [J]. 机械工程学报, 2018, 54(17): 142-148.
ZHANG Tie, YE Jingyang, LIU Xiaogang. Weighted hand-eye calibration algorithm for robot grinding [J]. Journal of Mechanical Engineering, 2018, 54(17): 142-148.
[12] MURRAY R M, SASTRY S S, ZEXIANG L. A mathematical introduction to robotic manipulation [M]. Boca Raton, FL, USA: Chemical Rubber Company, 1994: 25-56.
[13] JOUBAIR A, BONEV I A. Kinematic calibration of a six-axis serial robot using distance and sphere constraints [J]. International Journal of Advanced Manufacturing Technology, 2015, 77(1/2/3/4): 515-523.
[14] HE S, MA L, YAN C, et al. Multiple location constraints based industrial robot kinematic parameter calibration and accuracy assessment [J]. International Journal of Advanced Manufacturing Technology, 2018, 102(5/6/7/8): 1037-1050.
[15] 罗振军, 孙思嘉, 梅江平, 等. 基于拉线位移传感器的机器人标定应用研究 [J]. 航空制造技术, 2017, 60(9): 43-49.
LUO Zhenjun, SUN Sijia, MEI Jiangping, et al. Application research of robot calibration based on draw-wire displacement sensors [J]. Aeronautical Manufacturing Technology, 2017, 60(9): 43-49.
[16] ZHANG Z. A flexible new technique for camera calibration [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.
[17] TABB A. Hand-eye calibration dataset [DB/OL]. [2019-04-05]. https:∥data.nal.usda.gov/dataset/data-solving-robot-world-hand-eyes-calibration-proble m-iterative-methods.
[18] AGARWAL S, MIERLE K. A large scale non-linear optimization library [EB/OL]. [2019-02-01]. http: ∥ceres-solver.org/nnls_solving.html.
[19] YIN S, GUO Y, REN Y, et al. Real-time thermal error compensation method for robotic visual inspection system [J]. The International Journal of Advanced Manufacturing Technology, 2014, 75(5/6/7/8): 933-946.
[20] LI C, WU Y, LOWE H, et al. POE-based robot kinematic calibration using axis configuration space and the adjoint error model [J]. IEEE Transactions on Robotics, 2016, 32(5): 1264-1279.

相似文献/References:

[1]刘玉斌,赵杰,杨永刚,等.6-PRRS并联机器人正逆奇异性研究[J].西安交通大学学报,2007,41(08):922.[doi:10.7652/xjtuxb200708010]
 LiuYubin,Zhao Jie,Yang Yonggang,et al.Study on Forward and Inverse Singularity of a 6PRRS Parallel Robot[J].Journal of Xi'an Jiaotong University,2007,41(08):922.[doi:10.7652/xjtuxb200708010]
[2]王君臣,王田苗,杨艳,等.非线性最优机器人手眼标定[J].西安交通大学学报,2011,45(09):015.[doi:10.7652/xjtuxb201109004]
 WANG Junchen,WANG Tianmiao,YANG Yan,et al.Nonlinear Optimal Robot Hand-Eye Calibration[J].Journal of Xi'an Jiaotong University,2011,45(08):015.[doi:10.7652/xjtuxb201109004]
[3]尚万峰,赵升吨.伺服压力机加工工艺的Bezier模型及其优化研究[J].西安交通大学学报,2012,46(03):031.[doi:10.7652/xjtuxb201203006]
 SHANG Wanfeng,ZHAO Shengdun.Servo Press Processing Bezier-Model with Optimum[J].Journal of Xi'an Jiaotong University,2012,46(08):031.[doi:10.7652/xjtuxb201203006]
[4]张晓艳,孙建桥,丁千.五自由度机械臂的运动学分析及时滞控制[J].西安交通大学学报,2013,47(10):103.[doi:10.7652/xjtuxb201310018]
 ZHANG Xiaoyan,SUN Jianqiao,DING Qian.Kinematics Analysis and Time Delayed Control of a FiveDegree of Freedom Manipulator[J].Journal of Xi'an Jiaotong University,2013,47(08):103.[doi:10.7652/xjtuxb201310018]
[5]王冰,方跃法.一种运动分岔并联机构的结构约束与运动模式分析[J].西安交通大学学报,2018,52(06):062.[doi:10.7652/xjtuxb201806010]
 WANG Bing,FANG Yuefa.Structural Constraint and Motion Mode Analysis on Parallel Mechanism with Bifurcated Motion[J].Journal of Xi'an Jiaotong University,2018,52(08):062.[doi:10.7652/xjtuxb201806010]
[6]陈乐瑞,曹建福,王晓琪.结合非线性频谱和核主元分析的机器人用RV减速器故障诊断[J].西安交通大学学报,2020,54(01):032.[doi:10.7652/xjtuxb202001005]
 CHEN Lerui,CAO Jianfu,WANG Xiaoqi.Fault Diagnosis for Robot RV Reducer Using Nonlinear Frequency Spectrum and Kernel Principal Component Analysis[J].Journal of Xi'an Jiaotong University,2020,54(08):032.[doi:10.7652/xjtuxb202001005]

备注/Memo

备注/Memo:
收稿日期: 2019-11-04。作者简介: 田鹏飞(1995—),男,硕士生; 杨树明(通信作者),男,教授,博士生导师。基金项目: 国家自然科学基金优秀青年基金资助项目(51722509); 国家自然科学基金资助项目(51575440); 陕西省创新人才推进计划 ——科技创新团队资助项目(2019TD-011)。
更新日期/Last Update: 2020-08-10