[1]穆小奇,张小栋,徐海鹏,等.防老年人跌倒的助老机器人人机系统动态稳定性分析模型[J].西安交通大学学报,2020,54(08):067-76.[doi:10.7652/xjtuxb202008009]
 MU Xiaoqi,ZHANG Xiaodong,XU Haipeng,et al.Dynamic Stability Analysis Models for Human-Robot Systems of Elderly-Assistant Robots Helping Elderly Prevent Falling[J].Journal of Xi'an Jiaotong University,2020,54(08):067-76.[doi:10.7652/xjtuxb202008009]
点击复制

防老年人跌倒的助老机器人人机系统动态稳定性分析模型
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第08期
页码:
067-76
栏目:
出版日期:
2020-08-10

文章信息/Info

Title:
Dynamic Stability Analysis Models for Human-Robot Systems of Elderly-Assistant Robots Helping Elderly Prevent Falling
文章编号:
0253-987X(2020)08-0067-10
作者:
穆小奇12 张小栋12 徐海鹏12 李亮亮12
1.西安交通大学机械工程学院, 710049, 西安; 2.西安交通大学陕西省智能机器人重点实验室, 710049, 西安
Author(s):
MU Xiaoqi12 ZHANG Xiaodong12 XU Haipeng12 LI Liangliang12
1. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China; 2. Shaanxi Key Laboratory of Intelligent Robot, Xi'an Jiaotong University, Xi'an 710049, China
关键词:
助老机器人 动态稳定性 人机系统 动力学模型
Keywords:
elderly-assistant robot dynamic stability human-robot system dynamical model
分类号:
TH113
DOI:
10.7652/xjtuxb202008009
文献标志码:
A
摘要:
针对现有助行机器人防老年人跌倒的安全保障措施不够完善、模型存在局限性的问题,建立了防止老年人跌倒的助老机器人人机系统动力学模型,对人机系统的动态稳定性展开分析研究。首先,建立了人体倒立摆动力学模型,得到了人体动态稳定性区域以及人体跌倒的可能形式; 其次,分别从前倾、后倾、左倾和右倾4种情况建立了防老年人跌倒的人机系统动力学模型,并给出了系统动态稳定必须满足的约束条件; 最后,通过求解人机系统动力学方程对人体和助老机器人的动态稳定性分别进行了分析判断,并搭建了实验平台,分别对4种情况进行了实验,验证了模型的有效性。实验结果表明:在4种情况下,助老机器人的倾角均小于1°,人体的倾角均能在短时间内迅速下降至0°,所建人机系统可满足动态稳定性要求,所设计的助老机器人在帮助使用者进行户外行走过程中,能够起到防止老年人跌倒的目的。所提基于动态稳定性分析的动力学模型可为同类机器人控制研究提供理论基础,有助于助老机器人实用化。
Abstract:
Dynamical models for a human-robot system to prevent the elderly from falling are established to solve the problems of inadequate security measures and model limitations of the elderly fall prevention for the existing walking-assistant robot, and the dynamic stability of the human-robot system is analyzed. Firstly, a dynamical model of human inverted pendulum is established, and the dynamic stability region of human body and possible forms of human fall are obtained. Then, dynamical models for the human-robot system to prevent the elderly from falling are established from four situations, namely, human fall forward, fall back, fall to the left, and fall to the right respectively, and constraint conditions for the system to satisfy dynamic stability are given. Finally, the dynamic stabilities for both the human body and the robot are respectively analyzed by solving the dynamic equations of the human-robot system, and experiments are conducted on the lab-scale robot to verify the effectiveness of the dynamical models. The experimental results show that the inclination angles of the robot are less than 1° and the inclination angles of the human body rapidly drop to zero in a short time in all four situations. The human-robot system meets the requirements of dynamic stability, and the designed robot can prevent the elderly from fall. The dynamical models established in the dynamic stability analysis of human-robot system provide a theoretical basis for the control research of similar robots, which is helpful to the practical application of the elderly-assistant robots.

参考文献/References:

[1] YAN Qingyang, HUANG Jian, TAO Chunjing, et al. Intelligent mobile walking-aids: perception, control and safety [J]. Advanced Robotics, 2020, 34(1): 2-18.
[2] XU Wenxia, HUANG Jian, CHENG Lei. A novel coordinated motion fusion-based walking-aid robot system [J]. Sensors, 2018, 18(9): 2761-00.
[3] YAN Qingyang, HUANG Jian, XIONG Caihua, et al. Data-driven human-robot coordination based walking state monitoring with cane-type robot [J]. IEEE Access, 2018, 6: 8896-8908.
[4] TAO Chunjing, YAN Qingyang, LI Yitong. Hierarchical shared control of cane-type walking-aid robot [J]. Journal of Healthcare Engineering, 2017, 2017:8932938.
[5] SONG Kaitai, JIANG Sinyi, WU Shangyang. Safe guidance for a walking-assistant robot using gait estimation and obstacle avoidance [J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(5): 2070-2078.
[6] WANG Tianyi, JEONG H, OHNO Y. Evaluation of self-reliance support robot through relative phase [J]. IEEE Access, 2017, 5: 17816-17823.
[7] CIFUENTES C A, RODRIGUEZ C, FRIZERA-NETO A, et al. Multi-modal human-robot interaction for walker-assisted gait [J]. IEEE Systems Journal, 2016, 10(3): 933-943.
[8] JIANG Sinyi, LIN Chenyang, HUANG Kotung, et al. Shared control design of a walking-assistant robot [J]. IEEE Transactions on Control Systems Technology, 2017, 25(6): 2143-2150.
[9] MOON M K, KIM S C. Usability evaluation of movement support service robot for elderly [C]∥ International Conference on Ergonomics Modeling, Usability and Special Populations. Berlin, Germany: Springer-Verlag, 2017: 517-526.
[10] LEE G, OHNUMA T, CHONG N Y, et al. Walking intent-based movement control for JAIST active robotic walker [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2014, 44(5): 665-672.
[11] 徐文霞, 黄剑, 晏箐阳, 等. 兼备柔顺与安全的助行机器人运动控制研究 [J]. 自动化学报, 2016, 42(12): 1859-1873.
XU Wenxia, HUANG Jian, YAN Qingyang, et al. Research on walking-aid robot motion control with both compliance and safety [J]. Acta Automatic a Sinica, 2016, 42(12): 1859-1873.
[12] 吕韫琦. 助行机器人及其控制系统研究 [D]. 北京: 北京理工大学, 2016: 13-92.
[13] NAKAGAWA S, HASEGAWA Y, FUKUDA T, et al. Tandem stance avoidance using adaptive and asymmetric admittance control for fall prevention [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24(5): 542-550.
[14] DI Pei, HASEGAWA Y, NAKAGAWA S, et al. Fall detection and prevention control using walking-aid cane robot [J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(2): 625-637.
[15] GERAVAND M, RAMPELTSHAMMER W, PEER A. Control of mobility assistive robot for human fall prevention [C]∥Proceedings of IEEE International Conference on Rehabilitation Robotics. Piscataway NJ, USA: IEEE, 2015: 882-887.
[16] 穆小奇, 张小栋, 王亚宾, 等. 助老机器人伴行模态人机耦合系统的耐冲击振动特性分析 [J]. 振动与冲击, 2020, 39(2): 22-31.
MU Xiaoqi, ZHANG Xiaodong, WANG Yabin, et al. Impact vibration resistance characteristics of a human-robot couple system for controlling the walking posture of an elderly-assistant robot [J]. Journal of Vibration and Shock, 2020, 39(2): 22-31.
[17] PAI Yichung, PATTON J. Center of mass velocity-position predictions for balance control [J]. Journal of Biomechanics, 1997, 30(4): 347-354.
[18] PAI Yichung, IQBAL K. Simulated movement termination for balance recovery: can movement strategies be sought to maintain stability in the presence of slipping or forced sliding? [J]. Journal of Biomechanics, 1999, 32(8): 779-786.
[19] 李世明, PAI Yi-chung, YANG Feng, 等. 人体动态稳定性理论及防跌倒扰动训练进展 [J]. 体育科学, 2011, 31(4): 67-74.
LI Shiming, PAI Yi-chung, YANG Feng, et al. Development of dynamic stability theory of human body and perturbation training for fall prevention [J]. China Sport Science, 2011, 31(4): 67-74.
[20] WINTER D A. Biomechanics and motor control of human movement [M]. 4th ed. Hoboken, NJ, USA: John Wiley & Sons, 2009: 82-106.
[本刊相关文献链接]
孙平,丁雨姗.全方向康复步行训练机器人具有死区补偿的反步有限时间控制.2020,54(7):1-8+74.[doi:10.7652/xjtuxb202007001]
闵剑,刘朝雨,王江北,等.模块化软体机器人多模式运动分析.2020,54(3):126-133.[doi:10.7652/xjtuxb202003016]
李敏,陈佳洲,何博,等.多段连续结构手功能康复外骨骼运动规划与结构优化.2019,53(10):1-9.[doi:10.7652/xjtuxb 201910001]
屠尧,朱爱斌,宋纪元,等.下肢外骨骼康复机器人人机交互力自适应导纳控制.2019,53(6):9-16.[doi:10.7652/xjtuxb 201906002]
张铁,林康宇,邹焱飚,等.用于机器人末端残余振动控制的控制误差优化输入整形器.2018,52(4):90-97.[doi:10.7652/xjtuxb201804013]
朱圣晨,李敏,徐光华,等.多段连续结构的外骨骼手指功能康复机器人.2018,52(6):17-22.[doi:10.7652/xjtuxb2018 06003]
尹贵,张小栋,陈江城,等.下肢康复机器人按需辅助自适应控制方法.2017,51(10):39-46.[doi:10.7652/xjtuxb201710 007]
杨航,刘凌,倪骏康,等.双关节刚性机器人自适应BP神经网络算法.2018,52(1):129-135.[doi:10.7652/xjtuxb2018 01019]
郭晓辉,王晶,杨扬,等.基于虚拟现实的下肢主被动康复训练系统研究.2016,50(2):124-131.[doi:10.7652/xjtuxb2016 02021]
郑杨,陈垒,王刚,等.欠驱动式手指康复训练装置的结构优化设计.2015,49(3):151-156.[doi:10.7652/xjtuxb201503 023]

备注/Memo

备注/Memo:
收稿日期: 2020-01-07。作者简介: 穆小奇(1988—),男,博士生; 张小栋(通信作者),男,教授,博士生导师。基金项目: 2017年新疆维吾尔自治区科技支疆计划资助项目(2017E0284)。
更新日期/Last Update: 2020-08-10