[1]叶文祥,柳长昕,刘健豪,等.采用温差发电-有机朗肯循环联合系统的船舶余热利用实验研究[J].西安交通大学学报,2020,54(08):050-57.[doi:10.7652/xjtuxb202008007]
 YE Wenxiang,LIU Changxin,LIU Jianhao,et al.Experimental Research of Ship Waste Heat Utilization by TEG-ORC Combined Cycle[J].Journal of Xi'an Jiaotong University,2020,54(08):050-57.[doi:10.7652/xjtuxb202008007]
点击复制

采用温差发电-有机朗肯循环联合系统的船舶余热利用实验研究
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第08期
页码:
050-57
栏目:
出版日期:
2020-08-10

文章信息/Info

Title:
Experimental Research of Ship Waste Heat Utilization by TEG-ORC Combined Cycle
文章编号:
0253-987X(2020)08-0050-08
作者:
叶文祥 柳长昕 刘健豪 赵聪 代天伦 马科飞
大连海事大学轮机工程学院, 116026, 辽宁大连
Author(s):
YE Wenxiang LIU Changxin LIU Jianhao ZHAO Cong DAI Tianlun MA Kefei
College of Marine Engineering, Dalian Maritime University, Dalian, Liaoning 116026, China
关键词:
船舶余热 梯级利用 底循环比 TEG-ORC联合循环
Keywords:
vessel waste heat cascade utilization bottom cycle ratio TEG-ORC combined cycle
分类号:
TK121
DOI:
10.7652/xjtuxb202008007
文献标志码:
A
摘要:
为了实现具有复杂特性的船舶多种余热的高效回收,提出了一种基于温差发电-有机朗肯循环(TEG-ORC)联合循环的船舶余热梯级利用系统。根据底循环对主机烟气的利用量,定义了TEG/ORC底循环比参数。通过实验研究,探索了在ORC蒸发压力为0.9 MPa的工况下,系统输出功率、热效率、多级余热利用量和发电成本等重要性能参数随底循环比的变化规律,并对联合循环系统的性能及其影响规律进行了评估。实验设计了热管强化换热装置用以克服前期研究中发现的TEG底循环热端换热瓶颈。结果表明:3种底循环比(0.369、0.508、0.615)工况下的实验结果与模拟结果基本一致; TEG-ORC联合循环系统更好地利用了多种船舶余热及TEG底循环的冷却散热,提升了余热利用性能和输出功率,使其热效率高于各底循环且发电成本低于各底循环; 在TEG/ORC底循环比为0.615时,联合系统输出功率为134.50 W,热效率为6.93%,发电成本为3.32元/(kW·h)。TEG-ORC联合循环可实现船舶多种烟气余热的梯级利用,提高余热利用量,并提升ORC底循环运行的稳定性和安全性。
Abstract:
A waste heat cascade recovery system based on thermoelectric generation/organic Rankine cycle(TEG-ORC)combined cycle is proposed to achieve efficient recovery for various waste heat of vessels. A bottom cycle ratio parameter of TEG/ORC is defined according to the waste heat utilization of the main engine flue gas by different bottom cycles. Through subsequent experimental research, the law of main performance parameters such as system output power, thermal efficiency, multi-stage waste heat utilization and cost changing with bottom cycle ratio is studied under the condition of 0.9 MPa ORC evaporation pressure. Moreover, the performance of the combined cycle system and its parameter influence are evaluated. A heat pipe enhanced heat exchange device is designed in the experiment to overcome the heat exchange bottleneck in the hot end of the TEG bottom cycle. The experimental results from three groups with different bottom cycle ratios(0.369, 0.508, 0.615)are basically consistent with simulation results. It indicate that TEG-ORC combined cycle makes better use of multiple waste heat and heat dissipation of TEG bottom cycle, improves waste heat utilization performance and output power, and the thermal efficiency is higher than each bottom cycle while the power generation cost is lower than each bottom cycle. When the bottom cycle ratio is 0.615, the output power, thermal efficiency, and power generation cost of the combined cycle is 134.50 W, 6.93% and 3.32 Yuan/(kW·h)respectively. TEG-ORC combined cycle realizes the cascade utilization of vessel multiple flue gas waste heat, improves the utilization of waste heat, the stability and safety of ORC bottom cycle operation.

参考文献/References:

[1] CAI Yao, LIU Zhengjiang, KOBAYASHI E. Improving concordance of expert judgment in formal safety assessment [J]. Navigation, 2010, 176(3): 50.
[2] 梅磊. 船舶柴油机新型余热回收利用系统研究 [D]. 武汉: 武汉理工大学, 2011: 1-2.
[3] KRISTIANSEN N R, SNYDER G J, NIELSEN H K, et al. Waste heat recovery from a marine waste incinerator using a thermoelectric generator [J]. Journal of Electronic Materials, 2012, 41(6): 1024-1029.
[4] JI D X, TSENG K J, WEI Z B, et al. A simulation study on a thermoelectric generator for waste heat recovery from a marine engine [J]. Journal of Electronic Materials, 2017, 46(5): 2908-2914.
[5] HUANG Kuo, YAN Yuying, LI Bo, et al. A novel design of thermoelectric generator for automotive waste heat recovery [J]. Automotive Innovation, 2018,1(1): 54-61.
[6] HUANG Kuo, LI Bo, YAN Yuying, et al. A comprehensive study on a novel concentric cylindrical thermoelectric power generation system [J]. Applied Thermal Engineering, 2017, 117: 501-510.
[7] LIU Changxin, PAN Xinxiang, YAN Yuying, et al. An experimental study of a novel prototype for two-stage thermoelectric generator from vehicle exhaust [J]. Journal of the Energy Institute, 2016, 89(2): 271-281.
[8] LIU Changxin, LI Weizhong. An experimental study of a novel prototype for thermoelectric power generation from vehicle exhaust [J]. Distributed Generation & Alternative Energy Journal, 2014, 29(2): 8-23.
[9] LIU Changxin, LI Weizhong. An experimental study of a two-stage thermoelectric generator using heat pipe in vehicle exhaust [J]. Distributed Generation & Alternative Energy Journal, 2015, 30(1): 15-37.
[10] ZHENG Xiaofeng, LIU Changxin, BOUKHANOUF R, et al. Experimental study of a domestic thermoelectric cogeneration system [J]. Applied Thermal Engineering, 2014, 62(1): 69-79.
[11] ZHENG Xiaofeng, LIU Changxin, YAN Yuying, et al. A review of thermoelectrics research: recent developments and potentials for sustainable and renewable energy applications [J]. Renewable and Sustainable Energy Reviews, 2014, 32: 486-503.
[12] 王慧斌, 汪正洋, 吕延枫, 等. 船舶主机废气余热温差发电的数值模拟与试验研究 [J]. 船舶工程, 2018, 40(2): 8-11.
WANG Huibin, WANG Zhengyang, LÜ Yanfeng, et al. Numerical simulation and experimental study on exhaust heat of ship diesel engine based on TEG [J]. Ship Engineering, 2018, 40(2): 8-11.
[13] 柳长昕, 郑子升, 吕延枫, 等. 基于两级温差发电的船舶废热回收试验研究 [J]. 船舶工程, 2017, 39(1): 30-3467.
LIU Changxin, ZHENG Zisheng, LÜ Yanfeng, et al. Experimental study for vessel exhaust heat recovery based on two-stage thermoelectric generation [J]. Ship Engineering, 2017, 39(1): 30-3467.
[14] LIU Changxin, LI Fangming, ZHAO Cong, et al. Experimental research of thermal electric power generation from ship incinerator exhaust heat [J]. IPO Conference Series: Earth and Environmental Science, 2019, 227: 022031.
[15] GIRGIN I, EZGI C. Design and thermodynamic and thermoeconomic analysis of an Organic Rankine Cycle for naval surface ship applications [J]. Energy Conversion and Management, 2017, 148: 623-634.
[16] SHU Guqun, WANG Xuan, TIAN Hua, et al. Scan of working fluids based on dynamic response characters for Organic Rankine Cycle using for engine waste heat recovery [J]. Energy, 2017, 133: 609-620.
[17] MILLER E W, HENDRICKS T J, PETERSON R B. Modeling energy recovery using thermoelectric conversion integrated with an organic Rankine bottoming cycle [J]. Journal of Electronic Materials, 2009, 38(7): 1206-1213.
[18] MILLER E W, HENDRICKS T J, WANG H, et al. Integrated dual-cycle energy recovery using thermoelectric conversion and an organic Rankine bottoming cycle [J]. Proceedings of the Institution of Mechanical Engineers: Part A Journal of Power and Energy, 2011, 225(1): 33-43.
[19] QIU Kuanrong, HAYDEN A C S. Integrated thermoelectric and Organic Rankine Cycles for micro-CHP systems [J]. Applied Energy, 2012, 97: 667-672.
[20] SHU Gequn, ZHAO Jian, TIAN Hua, et al. Parametric and exergetic analysis of waste heat recovery system based on the thermoelectric generator and Organic Rankine Cycle utilizing R123 [J]. Energy, 2012, 45(1): 806-816.
[21] SHU Gequn, ZHAO Jian, TIAN Hua, et al. Theoretical analysis of engine waste heat recovery by the combined thermo-generator and organic Rankine cycle system [C]∥ SAE 2012 World Congress & Exhibition. Washington DC, USA: SAE, 2012: 636-644.
[22] 隋雨鑫. 基于热管和温差发电的船舶烟气余热回收装置设计与研究 [D]. 辽宁大连: 大连海事大学, 2017: 61-63.
[23] 郑子升. 基于半导体温差发电的船舶余热利用实验研究 [D]. 辽宁大连: 大连海事大学, 2017: 56-59.
[24] 吕延枫. 基于TEG-ORC联合循环的船舶余热利用系统数值模拟 [D]. 辽宁大连: 大连海事大学, 2018: 69-71.
[25] 王慧斌. 基于TEG-ORC联合循环的船舶余热回收仿真与模拟研究 [D]. 辽宁大连: 大连海事大学, 2019: 62-64.
[26] 李春春. 回收低温烟气余热的亚临界有机朗肯循环(ORC)系统多参数同步优化 [D]. 重庆: 重庆大学, 2017: 12-13.
[27] ZHANG Shengjun, WANG Huaixin, GUO Tao. Performance comparison and parametric optimization of subcritical Organic Rankine Cycle(ORC)and transcritical power cycle system for low-temperature geothermal power generation [J]. Applied Energy, 2011, 88(8): 2740-2754.
[28] QUOILIN S, DECLAYE S, TCHANCHE B F, et al. Thermo-economic optimization of waste heat recovery organic Rankine cycles [J]. Applied Thermal Engineering, 2011, 31(14/15): 2885-2893.
[29] EMRE O. Conversion of a scroll compressor to an expander for Organic Rankine Cycle modeling and analysis [D]. Toronto, Canada: University of Ontario. Institute of Technology, 2010: 133-136.
[30] 美丽鱼. 将旋转压缩机作为内燃机废热回收ORC膨胀机的研究 [D]. 北京: 清华大学, 2015: 84-86.

备注/Memo

备注/Memo:
收稿日期: 2020-03-05。作者简介: 叶文祥(1995—),男,硕士生; 柳长昕(通信作者),男,讲师。基金项目: 国家重点研发计划资助项目(2017YFC14046); 中央高校基本科研业务费专项资金资助项目(3132018255,3132019330)。
更新日期/Last Update: 2020-08-10