[1]张煜,侯予,陈良.等离激元Au纳米流体集热器性能研究[J].西安交通大学学报,2020,54(08):044-49.[doi:10.7652/xjtuxb202008006]
 ZHANG Yu,HOU Yu,CHEN Liang.Performance Analysis of the Collector of the Nanofluid with Plasmon Au[J].Journal of Xi'an Jiaotong University,2020,54(08):044-49.[doi:10.7652/xjtuxb202008006]
点击复制

等离激元Au纳米流体集热器性能研究
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第08期
页码:
044-49
栏目:
出版日期:
2020-08-10

文章信息/Info

Title:
Performance Analysis of the Collector of the Nanofluid with Plasmon Au
文章编号:
0253-987X(2020)08-0044-06
作者:
张煜 侯予 陈良
西安交通大学能源与动力工程学院, 710049, 西安
Author(s):
ZHANG Yu HOU Yu CHEN Liang
School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
关键词:
等离激元共振 集热器 纳米粒子 光谱特性 光热转换效率
Keywords:
plasmon resonance collector nanoparticles spectral properties photothermal conversion efficiency
分类号:
TK512
DOI:
10.7652/xjtuxb202008006
文献标志码:
A
摘要:
为了探究含有Au纳米流体的二维太阳能体吸收式集热器的性能,采用控制容积法数值求解了太阳能集热器内部的温度分布,将集热器出口平均温度作为温升的衡量标准,分析了影响集热器温升和效率的主要因素。研究结果表明:集热器内光谱强度在Au等离激元共振波长(500 nm左右)处大幅衰减,证明了金属表面等离激元共振效应可大幅强化光谱吸收特性; 集热器内光谱辐射吸收程度影响集热器温度分布,从而影响集热器温升和效率; 采用纯水作为工作流体时集热器效率仅39.99%,添加Au纳米粒子比添加Ag纳米粒子具有更高的集热器效率,可达78.75%; 流体流速主要影响集热器温升,集热器高度主要影响集热器效率; 当流速为0.1 m/s时可获得最大集热器温升36.63 ℃,集热器高度为2.5 cm时可获得最高效率82.98%; 粒径和集热器长度对集热器温升和效率影响均不大。
Abstract:
The control volume method is used to numerically solve the temperature distribution in the solar collector and to investigate the performance of a two-dimensional solar collector with Au nanofluids. The average temperature of collector outlet is taken as the measurement standard of temperature rise. The main factors affecting the temperature rise and efficiency of the collector are analyzed. The results show that the spectral intensity of the collector decreases greatly at the wavelength of Au plasmon resonance(about 500 nm), which proves that the effect of metal surface plasmon resonance can greatly enhance the spectral absorption characteristics, and that the degree of spectral radiation absorption in the collector affects the temperature distribution of the collector, thus affecting the temperature rise and efficiency of the collector; the efficiency of the collector is only 39.99% when pure water is used as the working fluid. Adding Au nanoparticles has higher collector efficiency than adding Ag nanoparticles, and the efficiency reaches 78.75%; the fluid velocity mainly affects the collector temperature rise, and the collector height mainly affects the collector efficiency. When the flow velocity is 0.1 m/s, the maximum collector temperature rise of 36.63 ℃ is obtained, and when the collector height is 2.5 cm, the maximum collector efficiency of 82.98% is reached; particle size and collector length have little effect on the collector temperature rise and efficiency.

参考文献/References:

[1] TYAGI H, PHELAN P, PRASHER R. Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector [J]. Journal of the Solar Energy Engineering, 2009, 131(4): 041004.
[2] HUSSEIN A K. Applications of nanotechnology to improve the performance of solar collectors: recent advances and overview [J]. Renewable and Sustainable Energy Reviews, 2016, 62: 767-792.
[3] ZHANG L, LIU J, HE G D, et al. Radiative properties of ionic liquid-based nanofluids for medium-to-high-temperature direct absorption solar collectors [J]. Solar Energy Materials and Solar Cells, 2014, 130: 521-528.
[4] JEON J, PARK S, LEE B J. Analysis on the performance of a flat-plate volumetric solar collector using blended plasmonic nanofluid [J]. Solar Energy, 2016, 132: 247-256.
[5] EASTMAN J A, CHOI S U S, LI S P, et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles [J]. Applied Physics Letters, 2001, 78(6): 718-720.
[6] ASSAEL M J, CHEN C F, METAXA I, et al. Thermal conductivity of suspensions of carbon nanotubes in water [J]. International Journal of Thermophysics, 2004, 25(4): 971-985.
[7] 陈梅洁, 唐天琪, 刘子玉, 等. TFFU离激元Ag纳米流体光热转换特性 [J]. 中国科学院大学学报, 2018, 35(2): 222-226.
CHEN Meijie, TANG Tianqi, LIU Ziyu, et al. Investigating on photothermal conversion properties of plasmonic Ag nanofluids [J]. Journal of University of Chinese Academy of Sciences, 2018, 35(2): 222-226.
[8] DUAN H L, TANG L L, ZHENG Y, et al. Effect of plasmonic nanoshell-based nanofluid on efficiency of direct solar thermal collector [J]. Applied Thermal Engineering, 2018, 133: 188-193.
[9] YU X X, XUAN Y M. Investigation on thermo-optical properties of CuO/Ag plasmonic nanofluids [J]. Solar Energy, 2018, 160: 200-207.
[10] ZHANG H, CHEN H J, DU X Z, et al. Photothermal conversion characteristics of gold nanoparticle dispersions [J]. Solar Energy, 2014, 100: 141-147.
[11] WU H, KUO C H, HUANG M H. Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures [J]. Langmuir, 2010, 26(14): 12307-12313.
[12] 陶文铨. 数值传热学 [M]. 2版. 西安: 西安交通大学出版社, 2001: 23.
[13] OTANICAR T P, PHELAN P E, GOLDEN J S. Optical properties of liquids for direct absorption solar thermal energy systems [J]. Solar Energy, 2009, 83(7): 969-977.
[14] NATARAJAN E, SATHISH R. Role of nanofluids in solar water heater [J]. The International Journal of Advanced Manufacturing Technology, 2009, 45: 1-5.
[15] QIN C Y, KANG K, LEE I, et al. Optimization of the spectral absorption coefficient of a plasmonic nanofluid for a direct absorption solar collector [J]. Solar Energy, 2018, 169: 231-236.
[16] BOHREN C F. Huffman: absorption and scattering of light by small particles [EB/OL]. [2019-11-13]. ht-tps:∥www. researchgate.net/publication/243700653_Huffman_Absorption_and_Scattering_of_Light_by_Small_Particles.
[17] 米凤文. 激光衍射粒度分析仪粒度分布求解方法的研究 [J]. 光子学报, 1999, 28(2): 151-154.
MI Fengwen. The laser diffraction particle size analyzer for methods to calculate particle size distribution [J]. Acta Photonica Sinica, 1999, 28(2): 151-154.
[18] PRASHER R. Thermal radiation in dense nano-and microparticulate media [J]. Journal of Applied Physics, 2007, 102(7): 074316.
[19] STREED E R, HILL J E, THOMAS W C, et al. Results and analysis of a round robin test program for liquid-heating flat-plate solar collectors [J]. Solar Energy, 1979, 22(3): 235-249.
[20] OTANICAR T, PHELAN P E, PRASHER R, et al. Nanofluid-based direct absorption solar collector [J]. Journal of Renewable and Sustainable Energy, 2010, 2(3): 033102.

备注/Memo

备注/Memo:
收稿日期: 2020-01-14。作者简介: 张煜(1997—),女,硕士生; 陈良(通信作者),男,副教授,硕士生导师。基金项目: 陕西高校青年创新团队支持计划资助项目。
更新日期/Last Update: 2020-08-10