[1]宋秉烨,李明佳,童自翔,等.碱性阴离子交换膜燃料电池用于消除微藻固碳过程中溶氧效应的实验研究[J].西安交通大学学报,2020,54(08):027-34.[doi:10.7652/xjtuxb202008004]
 SONG Bingye,LI Mingjia,TONG Zixiang,et al.An Experimental Study on the Dissolved Oxygen Consumption with Alkaline Anion-Exchange Membrane Fuel Cell[J].Journal of Xi'an Jiaotong University,2020,54(08):027-34.[doi:10.7652/xjtuxb202008004]
点击复制

碱性阴离子交换膜燃料电池用于消除微藻固碳过程中溶氧效应的实验研究
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第08期
页码:
027-34
栏目:
出版日期:
2020-08-10

文章信息/Info

Title:
An Experimental Study on the Dissolved Oxygen Consumption with Alkaline Anion-Exchange Membrane Fuel Cell
文章编号:
0253-987X(2020)08-0027-08
作者:
宋秉烨 李明佳 童自翔 刘占斌
西安交通大学热流科学与工程教育部重点实验室, 710049, 西安
Author(s):
SONG Bingye LI Mingjia TONG Zixiang LIU Zhanbin
MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
关键词:
光生物反应器 微藻固碳 溶氧消耗 碱性燃料电池
Keywords:
tubular photobioreactor microalgae carbon capture dissolved oxygen consumption alkaline fuel cell
分类号:
TK121
DOI:
10.7652/xjtuxb202008004
文献标志码:
A
摘要:
针对微藻固碳过程中藻液产生的高浓度溶氧会抑制藻细胞生长、降低CO2固定效率的问题,搭建了管式光生物反应器实验台用于藻类的高效培养和固碳,提出了利用电化学方法抑制藻液中溶氧效应的研究思路。首先开展管式光生物反应器培养小球藻的实验研究,对比了光生物反应器与锥形瓶2种培养装置对小球藻生长特性的影响,其次实验研究了利用碱性阴离子交换膜燃料电池的阴极氧还原反应去除藻液中的溶解氧。结果表明:管式光生物反应器运行10个周期之后,微藻的质量浓度达到769 mg/L,生物量增长了10倍,培养效果明显优于锥形瓶培养; 经过系统持续运行4 h之后,藻液中的溶氧量由18.35 mg/L降低到6.19 mg/L,溶氧消耗效率为66.3%,电池的最大功率密度达到81 W/m2。研究证明,采用燃料电池的阴极电化学反应可以实现藻液中溶解氧快速有效地消耗,这一方面提升了微藻的固碳效率,另一方面输出了电能,降低了系统能耗。
Abstract:
A tubular photobioreactor for efficiently cultivating chlorella is designed and built to solve the problem that the high concentration of dissolved oxygen generated in the microalgae solution would inhibit the growth of algal cells and reduce the efficiency of CO2 fixation. A new perspective idea is proposed to remove the dissolved oxygen in the microalgae suspension with electrochemical method. Results indicate that the tubular photobioreactor performs better than Erlenmeyer flask on chlorella cultivation. The concentration of chlorella reaches 769 mg/L after 10 cultivation cycles, and it is ten times of the initial concentration. By employing the anion-exchange membrane direct glucose duel cell(AEM-DGFC)with Pt-free electrodes to consume the dissolved oxygen in the microalgae suspension for 4 hours, the dissolved oxygen content decreases from 18.35 mg/L to 6.19 mg/L, and the dissolved oxygen content reduces by 66.3%. In addition, the peak power density of AEM-DGFC reaches 81 W/m2, which is superior to the cell with pure oxygen as the oxidant in the cathode. It is concluded that by the aid of AEM-DGFC, the dissolved oxygen is consumed efficiently. On the other hand, the electric energy is output and the energy consumption of the system is reduced.

参考文献/References:

[1] 鲁厚芳, 史国强, 刘颖颖, 等. 生物柴油生产及性质研究进展 [J]. 化工进展, 2011, 30(1): 126-136.
LU Houfang, SHI Guoqiang, LIU Yingying, et al. A review on researches on biodiesels production and their properties [J]. Chemical Industry and Engineering Progress, 2011, 30(1): 126-136.
[2] 王介妮, 曹磊昌, 刘扩金, 等. 微藻制备生物柴油的研究进展 [J]. 现代化工, 2013, 33(5): 36-39.
WANG Jieni, CAO Leichang, LIU Kuojin, et al. Research advances in preparation of biological diesel oil by microalgae method [J]. Modern Chemical Industry, 2013, 33(5): 36-39.
[3] 何雅玲, 王云海, 姚森, 等. 一种微生物电化学CO2捕捉系统: 201110209149.7 [P]. 2013-07-31.
[4] 周文广, 阮榕生. 微藻生物固碳技术进展和发展趋势 [J]. 中国科学: 化学, 2014, 44(1): 63-78.
ZHOU Wenguang, RUAN Rongsheng. Biological mitigation of carbon dioxide via microalgae: Recent development and future direction [J]. Scientia Sinica: Chimica, 2014, 44(1): 63-78.
[5] 袁桃, 梁斌, 李茂涛, 等. 管道式微藻光生物反应器设计 [J]. 现代化工, 2013, 33(5): 104-107, 109.
YUAN Tao, LIANG Bin, LI Maotao, et al. Design of tubular photobioreactor for microalgae [J]. Modern Chemical Industry, 2013, 33(5): 104-107, 109.
[6] 刘小澄, 刘永平. 管道式光生物反应器的设计和性能 [J]. 生命科学, 2010, 22(5): 492-498.
LIU Xiaocheng, LIU Yongping. Tubular photobioreactor design and performance [J]. Chinese Bulletin of Life Sciences, 2010, 22(5): 492-498.
[7] UGWU C U, AOYAGI H, UCHIYAMA H. Photobioreactors for mass cultivation of algae [J]. Bioresource Technology, 2008, 99(10): 4021-4028.
[8] 肖玉朋, 戴玉杰, 申世刚, 等. 户外管式光生物反应器培养发状念珠藻细胞 [J]. 食品科技, 2014, 39(3): 2-6.
XIAO Yupeng, DAI Yujie, SHEN Shigang, et al. The cultivation of Nostoc flagelliforme in outdoor tubular photobioreactor [J]. Food Science and Technology, 2014, 39(3): 2-6.
[9] LI Ping, PAN Shuyuan, PEI Silu, et al. Challenges and perspectives on carbon fixation and utilization technologies: an overview [J]. Aerosol and Air Quality Research, 2016, 16(6): 1327-1344.
[10] KAZBAR A, COGNE G, URBAIN B, et al. Effect of dissolved oxygen concentration on microalgal culture in photobioreactors [J]. Algal Research, 2019, 39: 101432.
[11] CHENG Lihua, ZHANG Lin, CHEN Huanlin, et al. Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor [J]. Separation and Purification Technology, 2006, 50(3): 324-329.
[12] SUH I S, LEE C G. Photobioreactor engineering: de-sign and performance [J]. Biotechnology and Bioprocess Engineering, 2003, 8(6): 313-321.
[13] YANG Junhong, CUI Xuyang, FENG Yuanzheng, et al. Experimental study on microalgae cultivation in novel photobioreactor of concentric double tubes with aeration pores along tube length direction [J]. International Journal of Green Energy, 2017, 14(15): 1269-1276.
[14] ZOU Yu, XU Xiaochen, WANG Xiaojing, et al. Achieving efficient nitrogen removal and nutrient recovery from wastewater in a combining simultaneous partial nitrification, anammox and denitrification(SNAD)process with a photobioreactor(PBR)for biomass production and generated dissolved oxygen(DO)recycling [J]. Bioresource Technology, 2018, 268: 539-548.
[15] ZHANG Han, GONG Weijia, BAI Langming, et al. Aeration-induced CO2 stripping, instead of high dissolved oxygen, have a negative impact on algae: bacteria symbiosis(ABS)system stability and wastewater treatment efficiency [J]. Chemical Engineering Journal, 2020, 382: 122957.
[16] JONES S M J, LOUW T M, HARRISON S T L. Energy consumption due to mixing and mass transfer in a wave photobioreactor [J]. Algal Research, 2017, 24: 317-324.
[17] SONG Bingye, LI Mingjia, HE Yan, et al. Electrochemical method for dissolved oxygen consumption on-line in tubular photobioreactor [J]. Energy, 2019, 177: 158-166.
[18] 师文静, 黎元生. 初始营养条件对小球藻生长影响的研究 [J]. 精细与专用化学品, 2010, 18(6): 32-35.
SHI Wenjing, LI Yuansheng. Effects of initial nutrient conditions on the growth of chlorella [J]. Fine and Specialty Chemicals, 2010, 18(6): 32-35.
[19] LI Yinshi, HE Yaling. Layer reduction method for fabricating Pd-coated Ni foams as high-performance ethanol electrode for anion-exchange membrane fuel cells [J]. RSC Advances, 2014, 4(32): 16879-16884.
[20] FUJIWARA N, YAMAZAKI S I, et al. Nonenzymatic glucose fuel cells with an anion exchange membrane as an electrolyte [J]. Electrochemistry communications, 2009, 11(2): 390-392.
[21] SONG Bingye, HE Yan, HE Yaling, et al. Experimental study on anode components optimization for direct glucose fuel cells [J]. Energy, 2019, 176: 15-22.

相似文献/References:

[1]郭祯,陈兆安,陆洪斌,等.CO2对亚心形扁藻生长及光合放氢的影响[J].西安交通大学学报,2008,42(06):779.[doi:10.7652/xjtuxb200806028]
 GUO Zhen,CHEN Zhaoan,LU Hongbin,et al.Enhanced Hydrogen Photoproduction by Marine Green Microalga Platymonas subcordiformis Grown under CO2Supplemented Air Bubble Bioreactor[J].Journal of Xi'an Jiaotong University,2008,42(08):779.[doi:10.7652/xjtuxb200806028]

备注/Memo

备注/Memo:
收稿日期: 2020-02-02。作者简介: 宋秉烨(1991—),男,博士生; 李明佳(通信作者),女,教授。基金项目: 国家自然科学基金资助项目(51806165,51906186)。
更新日期/Last Update: 2020-08-10