[1]李艳,谭厚章,刘原一,等.热解温度与碱金属对生物质热解碳烟氧化活性的影响[J].西安交通大学学报,2020,54(08):020-26+49.[doi:10.7652/xjtuxb202008003]
 LI Yan,TAN Houzhang,LIU Yuanyi,et al.Influences of Formation Temperature and Potassium Salts on Oxidation Reactivity of Soot from Biomass Pyrolysis[J].Journal of Xi'an Jiaotong University,2020,54(08):020-26+49.[doi:10.7652/xjtuxb202008003]
点击复制

热解温度与碱金属对生物质热解碳烟氧化活性的影响
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第08期
页码:
020-26+49
栏目:
出版日期:
2020-08-10

文章信息/Info

Title:
Influences of Formation Temperature and Potassium Salts on Oxidation Reactivity of Soot from Biomass Pyrolysis
文章编号:
0253-987X(2020)08-0020-08
作者:
李艳12 谭厚章1 刘原一2 王学斌1
1.西安交通大学热流科学与工程教育部重点实验室, 710049, 西安; 2.陕西秦龙电力股份有限公司, 710075, 西安
Author(s):
LI Yan12 TAN Houzhang1 LIU Yuanyi2 WANG Xuebin1
1. MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; 2. Shaanxi Qin Long Electric Power Co. Ltd., Xi'an 710075, China
关键词:
生物质 热解温度 碳烟 氧化活性 碱金属
Keywords:
biomass pyrolysis formation temperature soot oxidation reactivity potassium chloride
分类号:
TK123
DOI:
10.7652/xjtuxb202008003
文献标志码:
A
摘要:
为研究生物质碳烟的氧化反应活性,在沉降炉反应器中于1 000、1 100、1 200、1 300 ℃温度下对麦秆和木屑2种生物质进行了热解,获得了生物质热解碳烟样品。采用热重分析法测试了不同热解温度下产生的碳烟的氧化活性,研究了热解温度、生物质中碱金属对碳烟氧化活性的影响。结果表明:随着热解温度的升高,2种生物质碳烟的氧化活性表现出不同趋势,即木屑碳烟的氧化活性提高,而麦秆碳烟的氧化活性降低; 麦秆相对木屑具有显著高的碱金属(主要为KCl)含量; 水洗碳烟的氧化活性明显降低,表明KCl颗粒可以显著促进碳烟的氧化; X射线衍射(XRD)及粒径分析显示,随着热解温度的提高,2种生物质碳烟的石墨化程度提高,单个颗粒的几何平均粒径变小。因此认为,木屑碳烟的活性主要受碳烟粒径的影响,而麦秆碳烟由于其中含有明显多的碱金属颗粒(绝大部分为KCl),其活性受碱金属盐和粒径、内部结构等的综合作用。
Abstract:
Straw and woody biomasses are pyrolyzed in an entrained flow reactor at 1 000、1 100、1 200、1 300 ℃ to generate soot particles and to study the oxidation reactivity of soot produced from biomass. Thermogravimetric analysis is used to study the influences of pyrolysis temperature and potassium salts on oxidation reactivity of soot particle. Results show that the oxidation activity of soot from two biomasses has different trends with the increase of pyrolysis temperature, and the oxidation activity of woody soot increases while that of straw soot decreases. The potassium content(mainly KCl)of straw is significantly higher than that of woody biomass. The significantly reduced oxidation activity of water-washed soot indicates that KCl can significantly promote soot oxidation. X-ray diffraction and particle size analysis show that the degree of graphitization of both biomass soots increases with the increasing of pyrolysis temperature. Meanwhile the geometric mean particle size of primary soot particles decreases. It is concluded that the oxidation reactivity of soot from woody biomass is dominated by particle sizes. The activity of soot from straw biomass with high potassium content is affected by the combination of alkali metal salt, particle size, and internal structure.

参考文献/References:

[1] ESS M N, BLADT H, MÜHLBAUER W, et al. Reactivity and structure of soot generated at varying biofuel content and engine operating parameters [J]. Combustion and Flame, 2016, 163: 157-169.
[2] TIGHE C J, TWIGG M V, HAYHURST A N, et al. The kinetics of oxidation of diesel soots and a carbon black(Printex U)by O2 with reference to changes in both size and internal structure of the spherules during burnout [J]. Carbon, 2016, 107: 20-35.
[3] 李浩, 宋崇林, 宋金瓯, 等. 柴油机碳烟缸内氧化特性的研究 [J]. 内燃机学报, 2011, 29(6): 510-514.
LI Hao, SONG Chonglin, SONG Jinou, et al. Study of the oxidation behavior of in-cylinder diesel soot [J]. Transactions of CSICE, 2011, 29(6): 510-514.
[4] MÜHLBAUER W, ZÖLLNER C, LEHMANN S, et al. Correlations between physicochemical properties of emitted diesel particulate matter and its reactivity [J]. Combustion and Flame, 2016, 167: 39-51.
[5] GAO Jianbing, MA Chaochen, XING Shikai, et al. A review of fundamental factors affecting diesel PM oxidation behaviors [J]. Science China Technological Sciences, 2018, 61(3): 330-345.
[6] KURIAN V, MAHAPATRA N, WANG B, et al. Analysis of soot formed during the pyrolysis of Athabasca oil sand asphaltenes [J]. Energy & Fuels, 2015, 29(10): 6823-6831.
[7] TRUBETSKAYA A, JENSEN P A, JENSEN A D, et al. Effect of fast pyrolysis conditions on biomass solid residues at high temperatures [J]. Fuel Processing Technology, 2016, 143: 118-129.
[8] 宋崇林, 李博, 马翔, 等. 火焰温度对碳烟微观结构和氧化活性的影响 [J]. 天津大学学报(自然科学与工程技术版), 2015, 48(6): 535-541.
SONG Chonglin, LI Bo, MA Xiang, et al. Effect of flame temperature on the microstructure and oxidation reactivity of soot particles [J]. Journal of Tianjin University(Science and Technology), 2015, 48(6): 535-541.
[9] SEPTIEN S, VALIN S, DUPONT C, et al. Effect of particle size and temperature on woody biomass fast pyrolysis at high temperature(1000—1400 ℃)[J]. Fuel, 2012, 97: 202-210.
[10] QIN K, LIN W G, FAESTER S, et al. Characterization of residual particulates from biomass entrained flow gasification [J]. Energy & Fuels, 2013, 27(1): 262-270.
[11] TRUBETSKAYA A, JENSEN P A, JENSEN A D, et al. Effects of several types of biomass fuels on the yield, nanostructure and reactivity of soot from fast pyrolysis at high temperatures [J]. Applied Energy, 2016, 171: 468-482.
[12] WIINIKKA H, TOTH P, JANSSON K, et al. Particle formation during pressurized entrained flow gasification of wood powder: effects of process conditions on chemical composition, nanostructure, and reactivity [J]. Combustion and Flame, 2018, 189: 240-256.
[13] HERNÁNDEZ-GIMÉNEZ A, CASTELLÓ D, BUENO-LÓPEZ A. Diesel soot combustion catalysts: review of active phases [J]. Chemical Papers, 2014, 68(9): 1154-1168.
[14] 庞克亮, 向文国, 赵长遂, 等. 钾盐对煤焦CO2气化反应特性的影响 [J]. 燃烧科学与技术, 2007, 13(1): 63-66.
PANG Keliang, XIANG Wenguo, ZHAO Changsui, et al. Gasification of coal char-CO2 in the presence of potash [J]. Journal of Combustion Science and Technology, 2007, 13(1): 63-66.
[15] 梁鹏, 张桂臻, 王季秋, 等. 柴油车尾气碳烟颗粒物催化燃烧催化剂的最新研究进展 [J]. 环境工程学报, 2008, 2(5): 577-585.
LIANG Peng, ZHANG Guizhen, WANG Jiqiu, et al. Latest progress in catalysts for the catalytic combustion of diesel soot particulates [J]. Chinese Journal of Environmental Engineering, 2008, 2(5): 577-585.
[16] 肖正航, 唐勇, 卓建坤, 等. 煤粉燃烧初期碱金属与碳烟相互作用的研究 [J]. 工程热物理学报, 2017, 38(2): 399-405.
XIAO Zhenghang, TANG Yong, ZHUO Jiankun, et al. Study on soot-sodium interaction in the initial stage during pulverized coal combustion [J]. Journal of Engineering Thermophysics, 2017, 38(2): 399-405.
[17] RINKENBURGER A, TORIYAMA T, YASUDA K, et al. Catalytic effect of potassium compounds in soot oxidation [J]. ChemCatChem, 2017, 9(18): 3513-3525.
[18] CHEN Hui, ZHANG Yexin, ZHANG Jian. Dipole-moment-driven diesel soot oxidation in the presence of alkali metal chlorides [J]. Catalysis Science & Technology, 2018, 8(4): 970-974.
[19] ANEGGI E, LEITENBURG C D, DOLCETTI G, et al. Diesel soot combustion activity of ceria promoted with alkali metals [J]. Catalysis Today, 2008, 136(1/2): 3-10.
[20] LI Yan, TAN Houzhang, WANG Xuebin, et al. Characteristics and mechanism of soot formation during the fast pyrolysis of biomass in an entrained flow reactor [J]. Energy & Fuels, 2018, 32(11): 11477-11488.
[21] FAN X L, YANG F, ZHANG W, et al. Variation of the crystalline structure of coal char during pyrolysis and its effect on gasification reactivity [J]. Journal of Fuel Chemistry and Technology, 2006, 34(4): 395-398.
[22] YEHLIU K, VANDER WAL R L, ARMAS O, et al. Impact of fuel formulation on the nanostructure and reactivity of diesel soot [J]. Combustion and Flame, 2012, 159(12): 3597-3606.
[23] VANDER WAL R L, TOMASEK A J. Soot nanostructure: dependence upon synthesis conditions [J]. Combustion and Flame, 2004, 136(1/2): 129-140.
[24] YEHLIU K, VANDER WAL R L, ARMAS O, et al. Impact of fuel formulation on the nanostructure and reactivity of diesel soot [J]. Combustion and Flame, 2012, 159(12): 3597-3606.
[25] WANG Xuebin, LI Shuaishuai, ADEOSUN A, et al. Effect of potassium-doping and oxygen concentration on soot oxidation in O2/CO2 atmosphere: a kinetics study by thermogravimetric analysis [J]. Energy Conversion and Management, 2017, 149: 686-697.
[26] VAN SETTEN B A A L, MAKKEE M, MOULIJN J A. Science and technology of catalytic diesel particulate filters [J]. Catalysis Reviews, 2001, 43(4): 489-564.
[27] LI Qian, WANG Xiao, XIN Ying, et al. A unified intermediate and mechanism for soot combustion on potassium-supported oxides [J]. Scientific Reports, 2015, 4(1): 4725.

相似文献/References:

[1]关宇,裴爱霞,郭烈锦.超临界水中半纤维素气化制氢的影响因素分析[J].西安交通大学学报,2007,41(01):009.[doi:10.7652/xjtuxb200701003]
 Guan Yu,Pei Aixia,Guo Liejin.Influence of Main Parameters on Gasification of Hemicellulose in Supercritical Water[J].Journal of Xi'an Jiaotong University,2007,41(08):009.[doi:10.7652/xjtuxb200701003]
[2]闫秋会,郭烈锦,吕友军.生物质/煤超临界水气化制氢的主要影响因素[J].西安交通大学学报,2008,42(03):368.[doi:10.7652/xjtuxb200803025]
 YAN Qiuhui,GUO Liejin,L Youjun.Influence of Main Parameters on Hydrogen Production During Biomass/Coal Gasification in Supercritical Water[J].Journal of Xi'an Jiaotong University,2008,42(08):368.[doi:10.7652/xjtuxb200803025]
[3]谢玉荣,沈来宏,肖军,等.生物质催化气化重整制取富氢气体的实验研究[J].西安交通大学学报,2008,42(05):634.[doi:10.7652/xjtuxb200805027]
 XIE Yurong,SHEN Laihong,XIAO Jun,et al.Experimental Research on Biomass Gasification and Reforming to Produce HydrogenRich Gas[J].Journal of Xi'an Jiaotong University,2008,42(08):634.[doi:10.7652/xjtuxb200805027]
[4]闫秋会,郭烈锦.生物质与煤超临界水气化制氢的实验研究[J].西安交通大学学报,2008,42(06):765.[doi:10.7652/xjtuxb200806025]
 YAN Qiuhui,GUO Liejin.Experimental Research on Production from Biomass and CoalG asified in Supercritical Water[J].Journal of Xi'an Jiaotong University,2008,42(08):765.[doi:10.7652/xjtuxb200806025]
[5]裴爱霞,张锐,金辉,等.超临界水中花生壳气化制氢催化剂的筛选与研究[J].西安交通大学学报,2008,42(07):913.[doi:10.7652/xjtuxb200807028]
 PEI Aixia,ZHANG Rui,JIN Hui,et al.Research on Catalysts and Their Catalytic Characteristics for Hydrogen Production by Gasification of Peanut Shell in Supercritical Water[J].Journal of Xi'an Jiaotong University,2008,42(08):913.[doi:10.7652/xjtuxb200807028]
[6]吕友军,金辉,郭烈锦,等.原生生物质在超临界水流化床系统中气化制氢[J].西安交通大学学报,2009,43(02):111.[doi:10.7652/xjtuxb200902024]
 L Youjun,JIN Hui,GUO Liejin,et al.Hydrogen Production by Raw Biomass Gasification in Supercritical Water with a Fluidization Bed System[J].Journal of Xi'an Jiaotong University,2009,43(08):111.[doi:10.7652/xjtuxb200902024]
[7]李艳,谭厚章,王学斌,等.生物质高温热解气、液、固三相产物及碳烟生成特性[J].西安交通大学学报,2018,52(01):061.[doi:10.7652/xjtuxb201801010]
 LI Yan,TAN Houzhang,WANG Xuebin,et al.Formation Mechanisms of ThreePhase Products and Soot During the Pyrolysis of Biomass at High Temperatures[J].Journal of Xi'an Jiaotong University,2018,52(08):061.[doi:10.7652/xjtuxb201801010]

备注/Memo

备注/Memo:
收稿日期: 2020-02-09。作者简介: 李艳(1984—),女,博士生; 谭厚章(通信作者),男,教授,博士生导师。基金项目: 国家自然科学基金资助项目(51876162)。
更新日期/Last Update: 2020-08-10