[1]俞茂宏,武霞霞,史俊,等.确定土体破坏准则的一个新方法[J].西安交通大学学报,2020,54(08):001-10.[doi:10.7652/xjtuxb202008001]
 YU Maohong,WU Xiaxia,SHI Jun,et al.A New Strategy for Determining Failure Criteria of Soil[J].Journal of Xi'an Jiaotong University,2020,54(08):001-10.[doi:10.7652/xjtuxb202008001]
点击复制

确定土体破坏准则的一个新方法
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第08期
页码:
001-10
栏目:
出版日期:
2020-08-10

文章信息/Info

Title:
A New Strategy for Determining Failure Criteria of Soil
文章编号:
0253-987X(2020)08-0001-10
作者:
俞茂宏1 武霞霞1 史俊2 周广春2
1.西安交通大学机械结构强度与振动国家重点实验室, 710049, 西安; 2.哈尔滨工业大学土木工程学院, 150006, 哈尔滨
Author(s):
YU Maohong1 WU Xiaxia1 SHI Jun2 ZHOU Guangchun2
1. State Key Laboratory of Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China; 2. College of Civil Engineering, Harbin Institute of Technology, Harbin 150006, China
关键词:
平面应变 常规三轴试验 统一强度理论 摩擦角 统一滑移线场理论
Keywords:
plane strain conventional tri-axial test unified strength theory friction angle unified slip line field theory
分类号:
TB301
DOI:
10.7652/xjtuxb202008001
文献标志码:
A
摘要:
为了完全解决理论上和工程应用中土体破坏准则的合理选用问题,总结了国内外106种土体在平面应变和常规三轴试验下摩擦角的试验结果,发现结果具有明显的规律性。同时,这些试验结果所体现出的规律与统一强度理论和统一滑移线场理论得出的理论结果高度吻合。根据这一发现,建立了破坏准则与平面应变、常规三轴试验条件下材料的强度参数之间的定量关系,由此提出了一个确定土体破坏准则的新方法。该准则具有简单的线性表达式,只需要用平面应变试验和常规三轴试验得到的摩擦角差值即可构建,便于工程应用。该研究结果也可推广应用于岩石材料、混凝土材料、工程塑料以及拉压强度不等的其他材料,更复杂的结果有待进一步验证。
Abstract:
To completely solve the problem of reasonable selection of failure criteria in theory and engineering application, the test results of friction angles of 106 kinds for soils at home and abroad under plane strain and conventional tri-axial tests are summarized, and an obvious regularity is found. The experimental results well coincide with the theoretical results of unified strength theory and unified slip line field theory. Analyzing the conclusion, the quantitative relationship of failure criterion with material strength parameters under plane strain and conventional tri-axial tests is established. Therefore, a new strategy for determining the failure criterion of soils is proposed, where the criterion with a simple linear expression is constructed in terms of only friction angle difference obtained from the plane strain test and the conventional tri-axial test. This strategy can also be applied to rock materials, concrete materials, engineering plastics and other materials with different tensile and compressive strength, and more complex results remain to be further verified.

参考文献/References:

[1] HUMPHESON C, NAYLOR D J. The importance of the form of the failure criterion: C/R/243/75 [R]. Swansea, UK: University of Wales, 1975.
[2] CHEN W F, SALEEB A F. Preface [M]∥Constitutive Equations for Engineering Materials-Elasticity and Modeling. Amsterdam, Holland: Elsevier, 1994: Ⅸ-Ⅹ.
[3] ZIENKIEWICZ O C, PANDE G N. Some useful forms of isotropic yield surfaces for soil and rock mechanics [M]∥GUDEHUS G. Finite Elements in Geomechanics. London, UK: Wiley, 1977: 179-190.
[4] 俞茂宏. 强度理论新体系 [M]. 西安: 西安交通大学出版社, 1992: 20-32.
[5] 俞茂宏. 双剪理论及其应用 [M]. 北京: 科学出版社, 1998: 249-338.
[6] DAVIS R O, SELVADURAI A P S. Plasticity and geomechanics [M]. Cambridge, UK: Cambridge University Press, 2002: 65-74.
[7] DE SOUZA NETO E A, PERI D, OWEN D R J. Computational methods for plasticity [M]. Chichester, UK: John Wiley & Sons Ltd., 2008: 143-168.
[8] OTTOSEN N S, RISTINMAA M. Thermodynamic framework for constitutive modeling [M]∥The Mechanics of Constitutive Modeling. Amsterdam, Holland: Elsevier, 2005: 551-589.
[9] YU Hai-Sui. Plasticity and geotechnics [EB/OL]. [2019-11-01]. https: ∥link.springer.com/book/10. 1007%2F978-0-387-33599-5.
[10] CORNFORTH D H. Some experiments on the influence of strain conditions on the strength of sand [J]. Géotechnique, 1964, 14(2): 143-167.
[11] HENKEL D J, WADE N H. Plane strain tests on a saturated remolded clay [J]. Journal of Soil Mechanics & Foundations Div, 1966, 92(6): 67-80.
[12] AL-HUSSAINI M M. Influence of relative density on the strength and deformation of sand under plane strain conditions [M]∥Evaluation of Relative Density and its Role in Geotechnical Projects Involving Cohesionless Soils. West Conshohocken, PA, USA: ASTM International, 1973: 332-332-16.
[13] VAID Y P, CAMPANELLA R G. Triaxial and plane strain behaviour of natural clay [J]. ASCE Journal of Geotechnical Engineering, 1974, 100(3): 207-224.
[14] 李树勤. 在平面应变条件下砂土本构关系的试验研究 [D]. 北京: 清华大学, 1982: 1-62.
[15] 马险峰, 望月秋利, 温玉君. 基于改良型平面应变仪的砂土特性研究 [J]. 岩石力学与工程学报, 2006, 25(9): 1745-1754.
MA Xianfeng, MOCHIZUKI A, WEN Yujun, et al. Study on properties of sand based on improved plane strain test apparatus [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(9): 1745-1754.
[16] 李广信, 张丙印, 于玉贞. 土力学 [M]. 2版. 北京: 清华大学出版社, 2013: 175.
[17] 栾茂田, 许成顺, 刘占阁, 等. 一般应力条件下土的抗剪强度参数探讨 [J]. 大连理工大学学报, 2004, 44(2): 271-276.
LUAN Maotian, XU Chengshun, LIU Zhange, et al. Study of shear strength parameters of soils under general stress conditions [J]. Journal of Dalian University of Technology, 2004, 44(2): 271-276.
[18] 龚文俊, 曾立峰, 孙军杰, 等. 基于中主应力修正关系的边坡稳定性分析 [J]. 岩土力学, 2014, 35(11): 3111-3116, 3156.
GONG Wenjun, ZENG Lifeng, SUN Junjie, et al. Analysis of slope stability based on modified relationship of intermediate principal stress [J]. Rock and Soil Mechanics, 2014, 35(11): 3111-3116, 3156.
[19] YU Maohong. Unified Strength Theory and Its Applications [M]. Berlin, Germany: Springer, 2004: 129-173.
[20] 俞茂宏. 岩土类材料的统一强度理论及其应用 [J]. 岩土工程学报, 1994, 16(2): 1-9.
YU Maohong. Unified strength theory for geomaterials and its applications [J]. Chinese Journal of Geotechnical Engineering, 1994, 16(2): 1-9.
[21] YU Maohong, MA Guowei, QIANG Hongfu, et al. Generalized plasticity [EB/OL]. [2019-11-01]. https: ∥www.researchgate.net/publication/287233675_Gen eralized_Plasticity.
[22] WADE N H. Plane strain failure characteristics of a saturated clay [EB/OL]. [2019-11-01]. https: ∥www.researchgate.net/publication/36302501_Plane_strain_failure_characteristics_of_a_saturated_clay.
[23] LEE K L. Comparison of plane strain and tri-axial tests on sand [J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96(3): 901-923.
[24] GREEN G E. Strength and deformation of sand measured in an independent stress control cell [C]∥Roscoe Memorial Symposium on Stress-Strain Behaviour of Soils. Cambridge, UK: Cambridge Co., 1972: 285-323.
[25] 市原松平, 松沢宏, 山田公夫. 平面ひずみ状態と軸対称ひずみ状態におけるゆるい飽和砂の非排水せん断特性 [J]. Soils and Foundations, 1973, 172: 47-59.
[26] 李兴国. 平面应变状态下三峡围堰填料的抗剪强度 [J]. 人民长江, 1985, 16(5): 34-37.
LI Xingguo. Shear strength of filler for Three Gorges cofferdam under plane strain state [J]. Yangtze River, 1985, 16(5): 34-37.
[27] 殷宗泽, 赵航. 中主应力对土体本构关系的影响 [J]. 河海大学学报, 1990, 18(5): 54-61.
YIN Zongze, ZHAO Hang. Effect of middle principal stress on constitutive relationship [J]. Journal of Hohai University, 1990, 18(5): 54-61.
[28] 柏树田, 周晓光. 堆石在平面应变条件下的强度和应力-应变关系 [J]. 岩土工程学报, 1991, 13(4): 33-40.
BAI Shutian, ZHOU Xiaoguang. Strength and stress-strain relationship of rockflll under plane strain condition [J]. Chinese Journal of Geotechnical Engineering, 1991, 13(4): 33-40.
[29] MOCHIZUKI A, CAI M, TAKAHASHI S. A method for plane strain testing of sand [J]. Doboku Gakkai Ronbunshu, 1993, 1993(475): 99-107.
[30] 程展林, 丁红顺, 曾玲. 平面应变试验与简化数值分析 [J]. 长江科学院院报, 1995, 12(3): 37-42.
CHENG Zhanlin, DING Hongshun, ZENG Ling. Plane strain test and simplified numerical analysis [J]. Journal of Yangtze River Scientific Research Institute, 1995, 12(3): 37-42.
[31] YUMLU M, OZBAY M U. A study of the behaviour of brittle rocks under plane strain and tri-axial loading conditions [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(7): 725-733.
[32] 郭熙灵, 胡辉, 包承纲. 堆石料颗粒破碎对剪胀性及抗剪强度的影响 [J]. 岩土工程学报, 1997, 19(3): 83-88.
GUO Xiling, HU Hui, BAO Chenggang. Experimental studies of the effects of grain breakage on the dilatancy and shear strength of rock fill [J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 83-88.
[33] KURUKULASURIYA L C, ODA M, KAZAMA H. Anisotropy of undrained shear strength of an over-consolidated soil by tri-axial and plane strain tests [J]. Soils and Foundations, 1999, 39(1): 21-29.
[34] HANNA A. Determination of plane-strain shear strength of sand from the results of tri-axial tests [J]. Canadian Geotechnical Journal, 2001, 38(6): 1231-1240.
[35] WANATOWSKI D, CHU J. Drained behaviour of Changi sand in tri-axial and plane-strain compression [J]. Geomechanics and Geoengineering, 2007, 2(1): 29-39.
[36] 施维成, 朱俊高, 张博, 等. 粗粒土在平面应变条件下的强度特性研究 [J]. 岩土工程学报, 2011, 33(12): 1974-1979.
SHI Weicheng, ZHU Jungao, ZHANG Bo, et al. Strength characteristics of coarse-grained soil under plane strain condition [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1974-1979.
[37] 石修松, 程展林. 堆石料平面应变条件下统一强度理论参数研究 [J]. 岩石力学与工程学报, 2011, 30(11): 2244-2253.
SHI Xiusong, CHENG Zhanlin. Unified strength theory parameters of rockfill material in plane strain state [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(11): 2244-2253.
[38] 程展林, 陈鸥, 左永振, 等. 再论粗粒土剪胀性模型 [J]. 长江科学院院报, 2011, 28(6): 39-44, 49.
CHENG Zhanlin, CHEN Ou, ZUO Yongzhen, et al. Further discussion on dilatancy model for coarse-grained soils [J]. Journal of Yangtze River Scientific Research Institute, 2011, 28(6): 39-44, 49.
[39] GONG Guobin, ZHA Xiaoxiong, WEI Jun. Comparison of granular material behaviour under drained tri-axial and plane strain conditions using 3D DEM simulations [J]. Acta Mechanica Solida Sinica, 2012, 25(2): 186-196.
[40] 罗爱忠, 邵生俊. 新型卧式土工平面应变仪研制 [J]. 岩土力学, 2015, 36(7): 2117-2124.
LUO Aizhong, SHAO Shengjun. Development of a new horizontal plane strain apparatus [J]. Rock and Soil Mechanics, 2015, 36(7): 2117-2124.
[41] 王沙沙. 日本丰浦砂真三轴试验的研究 [D]. 杭州: 浙江工业大学, 2016: 1-65.

备注/Memo

备注/Memo:
收稿日期: 2019-12-31。作者简介: 俞茂宏(1934—),男,教授,博士生导师。
更新日期/Last Update: 2020-08-10