参考文献/References:
[1] BAKSHI S R, LAHIRI D, AGARWAL A. Carbon nanotube reinforced metal matrix composites-A review [J]. International Materials Reviews, 2010, 55(1): 41.
[2] 蔡建明, 曹春晓. 新一代600 ℃高温钛合金材料的合金设计及应用展望 [J]. 航空材料学报, 2014, 34(4): 27-36.
CAI Jianming, CAO Chunxiao. Alloy design and application prospect of a new generation of 600 ℃ high temperature titanium alloy [J]Journal of Aeronautical Materials, 2014, 34(4): 27-36.
[3] 黄陆军, 耿林, 彭华新. 钛合金与钛基复合材料第二相强韧化 [J]. 中国材料进展, 2019, 38(3): 214-222.
HUANG Lujun, GENG Lin PENG Huaxin. Strengthening and toughening mechanisms of the second phase in titanium alloys and titanium matrix composites [J]. Material Progress of China, 2019, 38(3): 214-222.
[4] TJONG S C, MAI Yiu-wing. Processing-structure-property aspects of particulate and whisker reinforced titanium matrix composites [J]. Composites Science and Technology, 2008, 68(3/4): 583-601.
[5] 黄陆军, 耿林. 网状结构钛基复合材料 [M]. 北京: 国防工业出版社, 2015: 1-18.
[6] 黄陆军, 耿林. 非连续增强钛基复合材料研究进展 [J]. 航空材料学报, 2014, 34(4): 126-138.
HUANG Lujun, GENG Lin. Research progress of discontinuous reinforced titanium matrix composites [J]. Journal of Aeronautical Materials, 2014, 34(4): 126-138.
[7] TJONG S C, MA Zongyi. Microstructural and mechanical characteristics of in situ metal matrix composites [J]. Materials Science and Engineering: R, 2009, 29(3/4): 49-113.
[8] 刘咏, 汤慧萍. 粉末冶金钛基结构材料 [M]. 长沙: 中南大学出版社, 2012: 23-34.
[9] CASATI R, VEDANI M. Metal matrix composites reinforced by nano-particles: a review [J]. Metals, 2014, 4(1): 65-83.
[10] 倪丁瑞, 耿林, 郑镇洙. 原位混杂增强钛基复合材料的制备与组织分析 [J]. 北京科技大学学报, 2007, 29(2): 107-111.
NI Dingrui, GENG Lin, ZHENG Zhenzhu. Preparation and microstructure analysis of in-situ hybrid reinforced titanium matrix composites [J]. Journal of Beijing University of Science and Technology, 2007, 29(2): 107-111.
[11] ZHANG Erlin, ZENG Gang, ZENG Songyan. Oxidation behavior of in situ TiB short fibre reinforced Ti-6Al-1.2B alloy in air [J]. Journal of Materials Science, 2002, 37(19): 4063-4071.
[12] HU Haiting, HUANG Lujun, GENG Lin, et al. Oxidation behavior of TiB-whisker reinforced Ti60 alloy composites with three-dimensional network architecture [J]. Corrosion Science, 2014, 85: 7-14.
[13] HUANG Lujun, GENG Lin, FU Yu, et al. Oxidation behavior of in situ TiCp/Ti6Al4V composite with self-assembled network microstructure fabricated by reaction hot pressing [J]Corrosion Science, 2013, 69: 175-180.
[14] JIANG Huiren, WANG Zhonglei, MA Wenshuai, et al. Effects of Nb and Si on high temperature oxidation of TiAl [J]. Transactions of Nonferrous Metals Society of China, 2008, 18(3): 512-517.
[15] JIAO Yang, HUANG Lujun, DUAN Tianbo, et al. Controllable two-scale network architecture and enhanced mechanical properties of(Ti5Si3+TiBw)/Ti6Al4V composites [J]. Scientific Reports, 2016, 6: 32991.
[16] ZHANG Lanting, WU Jiansheng. Ti5Si3 and Ti5Si3 based alloys: alloying behavior, microstructure and mechanical property evaluation [J]. Acta Materialia, 1998, 46(10): 3535-3546.
[17] JIAO Yang, HUANG Lujun, An Qi, et al. Effects of Ti5Si3 characteristics adjustment on microstructure and tensile properties of in-situ(Ti5Si3+TiBw)/Ti6Al4V composites with two-scale network architecture [J]Materials Science and Engineering: A, 2016, 673: 595-605.
[18] HUANG Lujun, XU Hongyu, WANG Bo, et al. Effects of heat treatment parameters on the microstructure and mechanical properties of in situ TiBw/Ti6Al4V composite with a network architecture [J]. Materials and Design, 2012, 36: 694-698.
[19] GORSSE S, MIMCLE D B. Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements [J]Acta Materialia, 2003, 51(9): 2427-2442.
[20] WANG Bo, HUANG Lujun, GENG Lin. Effects of heat treatments on the microstructure and mechanical properties of as-extruded TiBw/Ti6Al4V composites [J]. Materials Science and Engineering: A, 2012, 558: 663-667.
[21] 黄陆军, 耿林. 网状结构钛基复合材料研究进展 [J]. 中国材料进展, 2016, 35(9): 674-685.
HUANG Lujun, GENG Lin. Research progress of discontinuous reinforced titanium matrix composites [J]. Material Progress of China, 2016, 35(9): 674-685.
[22] MA Fengcang, ZHOU Jianjie, PING Liu, et al. Strengthening effects of TiC particles and microstructure refinement in in situ TiC-reinforced Ti matrix composites [J]. Materials Characterization, 2017, 127: 27-34.
[23] 孙曙宇. 热处理以及等温压缩过程中TC18钛基复合材料组织性能研究 [D]. 上海: 上海交通大学, 2013: 50-74.
[24] 曾泉浦, 毛小南, 张廷杰. 热处理对TP-650钛基复合材料组织与性能的影响 [J]. 稀有金属材料与工程, 1997(4): 20-23.
ZENG Quanpu, MAO Xiaonan, ZHANG Yanjie. Effect of heat treatment on microstructure and properties of TP-650 titanium matrix composites [J]. Rare Metal Materials and Engineering, 1997(4): 20-23.
[25] ZHAN Yongzhong, ZHANG Xinjiang, HU Jing, et al. Evolution of the microstructure and hardness of the Ti-Si alloys during high temperature heat-treatment [J]. Journal of Alloys and Compounds, 2009, 479(1/2): 246-251.
[26] 曹磊. 熔铸法制备TiC/Ti-6Al-4V复合材料组织与力学性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2010: 74-78.
[27] 吴志方, 刘超, 周帆. 两相体系中第二相体积分数对其Ostwald熟化的影响 [J]. 粉末冶金工业, 2016, 26(5): 43-47.
WU Zhifang, LIU Chao, ZHOU Fan. Effect of second phase volume fraction on Ostwald maturation in two-phase system [J]. Powder Metallurgy Industry, 2016, 26(5): 43-47.
[28] 焦阳. 两级网状结构(Ti5Si3+TiBw)/Ti6Al4V复合材料研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018: 50-65.
[29] ZOU Lianfeng, YANG Chaoming, LEI Yinkai, et al. Dislocation nucleation facilitated by atomic segregation [J]. Nature Materials, 2018, 17(1): 56-63.
[30] CICCO M, KONISHI H, CAO Guoping, et al. Strong, ductile magnesium-zinc nanocomposites [J]. Metallurgical and Materials Transactions: A, 2009, 40(12): 3038-3045.
[31] GUPTA R, CHAUDHARI G P, DANIEL B S S. Strengthening mechanisms in ultrasonically processed aluminum matrix composite with in-situ Al3Ti by salt addition [J]. Composites: Part B Engineering, 2018, 140: 27-34.
[32] MILLER W S, HUMPHREYS F J. Strengthening mechanisms in particulate metal matrix composites [J]. Scripta Metallurgica et Materialia, 1991, 25(1): 33-38.
[33] DING Ding, ZHANG Dechuang, LUO Zhichun, et al. Effects of Si addition on mechanical properties and superelasticity of Ti-7.5Nb-4Mo-2Sn shape memory alloy [J]. Materials and Design, 2014, 61(9): 146-149.
[34] KOLHE R, HUI Chungyuen, USTUNDAG E, et al. Residual thermal stresses and calculation of the critical metal particle size for interfacial crack extension in metal-ceramic matrix composites [J]. Acta Materialia, 1996, 44(1): 279-287.
相似文献/References:
[1]周增林宋月清,黄长庚,崔舜,等.热处理对La0.7Mg0.3(Ni0.85Co0.15)3.4贮氢电极合金性能的影响[J].西安交通大学学报,2007,41(11):1373.[doi:10.7652/xjtuxb200711028]
Zhou ZenglinSong Yueqing,Huang Changgeng,Cui Shun Zhang Yongjian,et al.Effects of Heat Treatment on Properties of La0.7Mg0.3-Ni0.85Co0.15-3.4 Hydrogen Storage Electrode Alloy[J].Journal of Xi'an Jiaotong University,2007,41(07):1373.[doi:10.7652/xjtuxb200711028]
[2]唐明,王璐璐,马建忠,等.石油膨胀套管的力学性能及膨胀后的残余应力[J].西安交通大学学报,2010,44(07):090.[doi:10.7652/xjtuxb201007020]
TANG Ming,WANG Lulu,MA Jianzhong,et al.Mechanical Properties of Expansion Casing and Residual Stress after Expansion[J].Journal of Xi'an Jiaotong University,2010,44(07):090.[doi:10.7652/xjtuxb201007020]
[3]张建军,高义民,邢建东,等.锻造加热处理对高硼铸造铁基合金组织与性能的影响[J].西安交通大学学报,2010,44(08):112.[doi:10.7652/xjtuxb201008022]
ZHANG Jianjun,GAO Yimin,XING Jiandong,et al.Effects of Forging and Heat Treatment on Microstructure andProperties of High Boron Cast Ferroalloy[J].Journal of Xi'an Jiaotong University,2010,44(07):112.[doi:10.7652/xjtuxb201008022]