[1]安守和,汪满新,李正亮.两操作模式2-R(SS)2-R(RR)2(RR)2并联机构误差建模及精度设计[J].西安交通大学学报,2020,54(07):146-157.[doi:10.7652/xjtuxb202007018]
 AN Shouhe,WANG Manxin,LI Zhengliang.Error Modeling and Accuracy Design of a 2-R(SS)2-R(RR)2(RR)2 Parallel Mechanism with Two Operation Modes[J].Journal of Xi'an Jiaotong University,2020,54(07):146-157.[doi:10.7652/xjtuxb202007018]
点击复制

两操作模式2-R(SS)2-R(RR)2(RR)2并联机构误差建模及精度设计
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第07期
页码:
146-157
栏目:
出版日期:
2020-07-08

文章信息/Info

Title:
Error Modeling and Accuracy Design of a 2-R(SS)2-R(RR)2(RR)2 Parallel Mechanism with Two Operation Modes
文章编号:
0253-987X(2020)07-0146-12
作者:
安守和 汪满新 李正亮
南京理工大学机械工程学院, 210094, 南京
Author(s):
AN Shouhe WANG Manxin LI Zhengliang
School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
关键词:
并联机构 两操作模式 误差建模 精度设计
Keywords:
parallel mechanism two operation modes error modeling accuracy design
分类号:
TG156
DOI:
10.7652/xjtuxb202007018
文献标志码:
A
摘要:
为提高多操作模式并联机构末端位姿精度,确定各误差源对机构末端误差的影响规律及其最优值,以一种两操作模式2-R(SS)2-R(RR)2(RR)2并联机构为对象,研究其误差建模及其零件公差优化设计方法。运用矢量法建立了可兼顾两种操作模式的机构位置逆解模型; 基于R(SS)2支链和R(RR)2(RR)2支链的误差模型,建立了2-R(SS)2-R(RR)2(RR)2并联机构两种操作模式统一的整机误差模型。提取不同操作模式下2-R(SS)2-R(RR)2(RR)2并联机构末端不可补偿误差,建立了末端不可补偿误差与各误差源的映射关系。基于灵敏度分析得到了两种操作模式下各误差源对末端不可补偿误差的影响规律,结果表明影响机构末端位姿精度的关键误差源共有23项。综合考虑两种操作模式下机构末端位姿精度,提出了以各零件尺寸误差灵敏度系数为权重系数而构造的机构尺寸公差总和最大为目标函数的精度优化模型。通过算例得到在给定精度条件下各关键误差源尺寸最优公差,为机构零件制造装配提供依据。
Abstract:
To improve the accuracy of the end-effector of a parallel mechanism with multiple operation modes and obtain the influencing rule of each error source on the accuracy of the end-effector and its optimal value, error modeling and component tolerance optimization design are carried out by taking a 2-R(SS)2-R(RR)2(RR)2 parallel mechanism with two operation modes as example. An inverse position model that can take both operation modes into account is established by the vector method. Based on the error models of R(SS)2 branch and R(RR)2(RR)2 branch, the unified error models of 2-R(SS)2-R(RR)2(RR)2 parallel mechanism considering both operation modes is established. The uncompensable errors of the parallel mechanism in different operation modes are extracted, and the mapping relationship between the uncompensable errors and each error source of the whole mechanism is established. Based on the sensitivity analysis, the influences of each error source on the uncompensable errors of the end-effector in each operation mode are obtained. The results show that there are 23 key error sources affecting the accuracy of the end-effector. By considering the end accuracy of the parallel mechanism in each operation mode and taking sensitivity coefficient of manufacturing tolerances of each component as the weight coefficient, the accuracy optimization model is proposed by maximizing the sum of manufacturing tolerances of each component. The tolerance values are obtained under a given accuracy condition through an example. These results could be taken as a theoretical reference for the component manufacturing and assembly.

参考文献/References:

[1] STEWART D. A platform with six degrees of freedom [J]. Proceedings of the Institution of Mechanical Engineers, 1965, 180(1): 371-386.
[2] 曾达幸, 樊明洲, 张庆武, 等. 一种少自由度并联机构误差特性分析方法 [J]. 中国机械工程, 2019, 30(16): 1982-1988.
ZENG Daxing, FAN Mingzhou, ZHANG Qingwu, et al. A method for analyzing error characteristics of lower-mobility parallel mechanisms [J]. China Mechanical Engineering, 2019, 30(16): 1982-1988.
[3] CLAVEL R. Device for the movement and positioning of an element in space: US4976582A [P]. 1990-12-11.
[4] HENNES N, STAIMER D. Application of PKM in aerospace manufacturing high performance machining centers ECOSPEED, ECOSPEED-F and ECOLINER [C]∥Proceedings of the 4th Chemnitz Parallel Kinematics Seminar. Auerbach, Germany: Verlag Wissenschaftliche Scripten, 2004: 557-568.
[5] OLAZAGOITIA J L, WYATT S. New PKM Tricept T9000 and its application to flexible manufacturing at aerospace industry: 07ATC-94 [R]. Warrendale, PA: USA: SAE Technical Papers, 2007: 37-48.
[6] 阎华, 刘桂雄, 郑时雄. 机器人位姿误差建模方法综述 [J]. 机床与液压, 2000(1): 3-5.
YAN Hua, LIU Guixiong, ZHEN Shixiong. Survey of methods of robot pose error modelling [J]. Machine Tool and Hydraulics, 2000(1): 3-5.
[7] 翟亚普. 一种新型四自由度姿态调整机构的误差补偿策略研究 [D]. 天津: 天津大学, 2016: 18-35.
[8] 李春霞, 张彦裴, 宫金良. 基于D-H矩阵的3-URS并联机构位姿误差建模与分析 [J]. 组合机床与自动化加工技术, 2017(8): 48-50.
LI Chunxia, ZHANG Yanfei, GONG Jinliang. Modeling and analyzing of position and pose error of 3-URS parallel mechanism based on D-H transforming matrix [J]. Modular Machine Tool and Automatic Manufacturing Technique, 2017(8): 48-50.
[9] VERNER M, XI F F, MECHEFSKE C. Optimal calibration of parallel kinematic machines [J]. Journal of Mechanical Design, 2005, 127(1): 62-69.
[10] 李新友, 陈五一, 韩先国. 基于正交设计的3-RPS并联机构精度分析与综合 [J]. 北京航空航天大学学报, 2011, 37(8): 979-984.
LI Xinyou, CHEN Wuyi, HAN Xianguo. Accuracy analysis and synthesis of 3-RPS parallel machine based on orthogonal design [J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(8): 979-984.
[11] 潘伯钊, 宋轶民, 王攀峰, 等. 基于激光跟踪仪的混联机器人快速零点标定方法 [J]. 机械工程学报, 2014, 50(1): 31-37.
PAN Bozhao, SONG Yimin, WANG Panfeng, et al. Laser tracker based rapid home position calibration of a hybrid robot [J]. Journal of Mechanical Engineering, 2017, 50(1): 31-37.
[12] 宋轶民, 翟亚普, 孙涛, 等. 基于区间分析的一类三转动自由度并联机构的精度设计 [J]. 北京工业大学学报, 2015, 41(11): 1620-1626.
SONG Yimin, ZHAI Yapu, SUN Tao, et al. Interval analysis based accuracy design of a 3-DOF rotational parallel mechanism [J]. Journal of Beijing University of Technology, 2015, 41(11): 1620-1626.
[13] CHEN Yuzhen, XIE Fugui, LIU Xinjun, et al. Error modeling and sensitivity analysis of a parallel robot with SCARA motions [J]. Chinese Journal of Mechanical Engineering, 2014, 27(4): 693-702.
[14] HUANG T, CHETWYND D G, MEI J P, Tolerance design of a 2-DOF over-constrained translational parallel robot [J]. IEEE Transactions on Robotics, 2006, 22(1): 167-172.
[15] 刘海涛. 少自由度机器人机构一体化建模理论、方法及工程应用 [D]. 天津: 天津大学, 2010: 63-71.
[16] NI Yanbing, SHAO Cuiyan, ZHANG Biao, et al. Error modeling and tolerance design of a parallel manipulator with full-circle rotation [J]. Advances in Mechanical Engineering, 2016, 8(5): 1-16.
[17] KONG Xianwen. Type synthesis of 3-DOF parallel manipulators with both a planar operation mode and a spatial translational operation mode [J]. Journal of Mechanisms and Robotics, 2013, 5(4): 1-8.
[18] 张春燕, 谢明娟, 张丹. 一种多模式移动并联机构的运动学分析及优化 [J]. 机械设计与研究, 2018, 34(6): 57-62.
ZHANG Chunyan, XIE Mingjuan, ZHANG Dan. Kinematic analysis and optimization of a multi-mode mobile parallel mechanism [J]. Machine Design and Research, 2018, 34(6): 57-62.
[19] 汪满新, 安守和, 冯虎田, 等. 一种具有两种操作模式的高速并联机器人机构: 201711183450.9 [P]. 2017-11-23.
[20] HUANG Tian, LI Ya, TANG Guobao, et al. Error modeling, sensitivity analysis and assembly process of a class of 3-DOF parallel kinematic machines with parallelogram struts [J]. Science in China: Series E, 2002, 45(5): 467-476.
[21] 于今, 余伟, 吴超宇, 等. 直线驱动型并联机器人误差模型与灵敏度分析 [J]. 农业机械学报, 2017, 48(7): 383-390.
YU Jin, YU Wei, WU Chaoyu, et al. Error modeling and sensitivity analysis of linear driven parallel robot [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 383-390.
[22] 王晓磊, 金振林, 李晓丹. 四足机器人腿部并联机构末端位置误差分析与验证 [J]. 农业工程学报, 2019, 35(6): 39-46.
WANG Xiaolei, JIN Zhenlin, LI Xiaodan. Analysis and verification of terminal position error of leg parallel mechanism of quadruped robot [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(6): 39-46.

相似文献/References:

[1]黄昔光,廖启征,魏世民,等.基于Groebner-Sylvester法的一般6-6型台体并联机构位置正解[J].西安交通大学学报,2008,42(03):300.[doi:10.7652/xjtuxb200803010]
 HUANG Xiguang,LIAO Qizheng,WEI Shimin,et al.Forward Kinematics of General 6-6 Stewart Mechanisms Based on Groebner-Sylvester Approach[J].Journal of Xi'an Jiaotong University,2008,42(07):300.[doi:10.7652/xjtuxb200803010]
[2]王冰,方跃法.一种运动分岔并联机构的结构约束与运动模式分析[J].西安交通大学学报,2018,52(06):062.[doi:10.7652/xjtuxb201806010]
 WANG Bing,FANG Yuefa.Structural Constraint and Motion Mode Analysis on Parallel Mechanism with Bifurcated Motion[J].Journal of Xi'an Jiaotong University,2018,52(07):062.[doi:10.7652/xjtuxb201806010]
[3]汤腾飞,张俊,方汉良.面向大型航空结构件的混联柔性制造系统 概念设计与性能评估[J].西安交通大学学报,2019,53(01):001.[doi:10.7652/xjtuxb201901001]
 ZHANG Jun,TANG Tengfei,FANG Hanliang.Conceptual Design and Performance Evaluation of a Hybrid Flexible Manufacturing System for Large Scale Aeronautic Components[J].Journal of Xi'an Jiaotong University,2019,53(07):001.[doi:10.7652/xjtuxb201901001]

备注/Memo

备注/Memo:
收稿日期: 2019-10-03。作者简介: 安守和(1994—),男,硕士生; 汪满新(通信作者),男,副教授。基金项目: 国家自然科学基金资助项目(51605225); 机械系统与振动国家重点实验室课题资助项目(MSV201812); 中央高校基本科研业务费专项资金资助项目(309171B8808)。
更新日期/Last Update: 2020-07-10