[1]王报龙,王亚兵,刘洋洋,等.轴系倾斜下可倾瓦推力轴承静动特性分析[J].西安交通大学学报,2020,54(07):129-138.[doi:10.7652/xjtuxb202007016]
 WANG Baolong,WANG Yabing,LIU Yangyang,et al.Static and Dynamic Characteristics of Tilting-Pad Thrust Bearing on Inclined Shaft[J].Journal of Xi'an Jiaotong University,2020,54(07):129-138.[doi:10.7652/xjtuxb202007016]
点击复制

轴系倾斜下可倾瓦推力轴承静动特性分析
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第07期
页码:
129-138
栏目:
出版日期:
2020-07-08

文章信息/Info

Title:
Static and Dynamic Characteristics of Tilting-Pad Thrust Bearing on Inclined Shaft
文章编号:
0253-987X(2020)07-0129-10
作者:
王报龙1 王亚兵1 刘洋洋1 祝长生2 袁小阳1
1.西安交通大学现代设计及转子轴承系统教育部重点实验室, 710049, 西安; 2.浙江大学电气工程学院, 310058, 杭州
Author(s):
WANG Baolong1 WANG Yabing1 LIU Yangyang1 ZHU Changsheng2 YUAN Xiaoyang1
1. Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, Xi’an 710049, China; 2. College of Electrical Engineering, Zhejiang University, Hangzhou 310058, China
关键词:
可倾瓦推力轴承 热弹流体动压润滑 轴线倾斜 静动特性
Keywords:
tilting-pad thrust bearing thermo-elasto-hydro-dynamic lubrication inclination static and dynamic characteristics
分类号:
TH133.3
DOI:
10.7652/xjtuxb202007016
文献标志码:
A
摘要:
针对船舶可倾瓦推力轴承在实际运行过程中存在的轴系倾斜问题,建立倾斜状态下可倾瓦推力轴承热弹流体动压润滑计算模型,研究倾斜状态对可倾瓦推力轴承静动特性的影响。提出了以倾斜角和轴线投影角两个参数来表征倾斜状态的数学模型; 联合热弹流体动压润滑模型和轴向油膜刚度、阻尼系数求解模型,全过程求解可倾瓦推力轴承静动特性。静态性能参数包括载荷、最小油膜厚度、最大油膜压力、最高油膜温度; 动态性能参数包括轴向油膜刚度和阻尼系数。结果表明:轴线倾斜使每块瓦承受载荷严重不均,造成各块瓦巨大的性能差异; 倾斜角增大使瓦所承受载荷、油膜压力和油膜温度增加,油膜厚度减小,且外载荷越大变化越显著; 轴线投影角所在轴瓦承受载荷最大,当轴线投影角在支点附近时,静态性能参数皆有极值存在; 轴线投影角在距瓦进油边31°的位置时推力轴承轴向油膜刚度和阻尼系数有最大值。研究结果可为倾斜状态下可倾瓦推力轴承可靠性的提高提供参考。
Abstract:
To solve the problem of shaft system inclination in the actual operation of marine tilting-pad thrust bearing, a thermo-elasto-hydro-dynamic(TEHD)model of tilting-pad thrust bearing is established, and the influence of inclination state on the static and dynamic performances of the bearing is studied. Firstly, a mathematical model is proposed to describe the inclination state with two parameters of inclined angle and axis projection angle. Then, the static and dynamic characteristics of the bearing are solved by combining the TEHD model and the axial oil film stiffness and damping coefficient solution model. Finally, the influences of inclined angle and axis projection angle on the static and dynamic characteristics of tilting-pad thrust bearing are analyzed. The static performance parameters include load, minimum oil film thickness, maximum oil film pressure and maximum oil film temperature; and the dynamic performance parameters include axial oil film stiffness and damping coefficient. The results show that the inclined axis makes each pad bear serious uneven load, resulting in great performance differences among the pads; the increasing inclination angle makes the load, oil film pressure and oil film temperature increase, but makes the oil film thickness decrease; and the larger the external load is, the more significant these changes will be. The bearing pad where the axis projection angle is located bears the largest load, and when the axis projection angle is near the fulcrum, the static performance parameters have extreme values. In addition, the maximum values of the axial oil film stiffness and damping coefficient can be found when the axis projection angle is 31° from the oil inlet side of the pad. This research may provide theoretical basis for improving reliability of the tilting-pad thrust bearing in inclination state.

参考文献/References:

[1] 张帆, 王祥, 奚延辉, 等. 自适应平衡梁轴承的均载能力及影响因素研究 [J]. 润滑与密封, 2017, 42(9): 6-11.
ZHAGN Fan, WANG Xiang, XI Yanhui, et al. Research of sharing load and influencing factors of tilting-pad thrust bearing with adaptive equalizing beams supported [J]. Lubrication Engineering, 2017, 42(9): 6-11.
[2] HESHMAT H, PINKUS O. Misalignment in thrust bearings including thermal and cavitation effects [J]. Journal of Tribology, 1987, 109(1): 108-114.
[3] BERGER S, BONNEAU O, FRENE J. Influence of axial thrust bearing defects on the dynamic behavior of an elastic shaft [J]. Tribology International, 2000, 33(3): 153-160.
[4] 蒋秀龙, 汪久根. 轴线偏斜对可倾瓦推力轴承润滑性能的影响 [J]. 润滑密封, 2011, 36(3): 9-12.
JIANG Xiulong, WANG Jiugen. Effect of misalignment on thermal elastohydrodynamic lubrication of tilting-pad thrust bearing [J]. Lubrication Engineering, 2011, 36(3): 9-12.
[5] 姜培林. 推力轴承对转子系统横向振动的影响及水轮发电机组轴系动力特性的研究 [D]. 西安: 西安交通大学, 1999: 18-45.
[6] 张帆, 欧阳武, 奚延辉, 等. 核主泵水润滑轴承的润滑性能及起飞转速 [J]. 机械设计与研究, 2017, 33(5): 87-92.
ZHANG Fan, OUYANG Wu, XI Yanhui, et al. Study on the lubrication performance and take-off speed of the nuclear main pump water lubricated bearing [J]. Machine Design and Research, 2017, 33(5): 87-92.
[7] KOSASIH P B, TIEU A K. An analysis of superlaminar diaphragm thrust bearings, including misalignment and thermal effects [J]. Wear, 1993, 167(2): 133-142.
[8] VIEIRA L C, CAVALCA K L. Analysis of the influence of force and moment dynamic coefficients on lubricated thrust bearings [C]∥Proceedings of the 10th International Conference on Vibrations in Rotating Machinery. London, UK: Woodhead Publishing, 2012: 557-566.
[9] ZHANG Xiuli, YIN Zhongwei, JIANG Dan, et al. Load carrying capacity of misaligned hydrodynamic water-lubricated plain journal bearings with rigid bush materials [J]. Tribology International, 2016, 99: 1-13.
[10] MALLYA R, SHENOY S B, PAI R. Steady state characteristics of misaligned multiple axial groove water-lubricated journal bearing [J]. Proceedings of the Institution of Mechanical Engineers: Part J Journal of Engineering Tribology, 2014, 229(6): 712-722.
[11] ROYLE J K, RAIZADA R S. Numerical analysis of effects of tilt, sliding, and squeeze action on externally pressurized oil-film bearings [J]. Proceedings of the Institution of Mechanical Engineers, 1965, 180(11): 113-122.
[12] SAFAR Z S. Adiabatic solution of a tilted hydrostatic thrust bearing [J]. Wear, 1983, 86(1): 133-138.
[13] 张青雷, 高孟雪, 徐华, 等. 考虑激振频率的可倾瓦推力轴承动特性理论与试验研究 [J]. 机械工程学报, 2014(23): 56-64.
ZHAGN Qinglei, GAO Mengxue, XU Hua, et al. Theoretical and experimental study on the dynamic characteristics of tilting pad thrust bearing considering excitation frequency [J]. Journal of Mechanical Engineering, 2014(23): 56-64.
[14] 马希直, 张功学, 朱均. 圆形瓦推力轴承动特性研究 [J]. 摩擦学学报, 2000(4): 300-303.
MA Zhixi, ZHANG Gongxue, ZHU Jun. Calculation and analysis on dynamic coefficients of circular pivot-pad thrust bearing [J]. Tribology, 2000(4): 300-303.
[15] 李忠, 袁小阳, 朱均. 可倾瓦推力轴承的线性和非线性动特性研究 [J]. 中国机械工程, 2000(5): 88-90.
LI Zhong, YUAN Xiaoyang, ZHU Jun. A study of linear and non-linear dynamic performance for tilting-pad thrust bearing [J]. China Mechanical Engineering, 2000(5): 88-90.
[16] IORDANOFF I, STEFAN P, BOUDET R, et al. Dynamic analysis of a thrust bearing-effect of misalignment and load [J]. Proceedings of the Institution of Mechanical Engineers: Part J Journal of Engineering Tribology, 1995, 209(J3): 189-194.
[17] 姜培林, 虞烈. 流体动压润滑推力轴承动特性的研究 [J]. 西安交通大学学报, 1996, 30(6): 67-75.
JIANG Peilin, YU Lie. Study on dynamic characteristics of hydrodynamic lubrication thrust bearing [J]. Journal of Xi’an Jiaotong University, 1996, 30(6): 67-75.
[18] FENG Huihui, JIANG Shuyun. Dynamic analysis of water-lubricated motorized spindle considering tilting effect of thrust bearing [J]. Proceedings of the Institution of Mechanical Engineers: Part C Journal of Mechanical Engineering Science, 2016, 231(20): 3780-3790.
[19] 邱家俊, 段文会. 推力轴承油膜刚度和阻尼的解析解 [J]. 大电机技术, 2002(2): 5-8.
QIU Jiajun, DUAN Wenhui. The analytical solution to oil film stiffness and damping of thrust bearing [J]. Large Electric Machine and Hydraulic Turbine, 2002(2): 5-8.

备注/Memo

备注/Memo:
收稿日期: 2020-01-07。作者简介: 王报龙(1994—),男,硕士生; 袁小阳(通信作者),男,教授,博士生导师。基金项目: 基础产品创新科研资助项目(CZ362); 国家科技重大专项资助项目(2014ZX06901023)。
更新日期/Last Update: 2020-07-10