[1]薛文松,李军,陈阳,等.横向间距和截面形状对汽轮机切向进气蜗壳气动性能的影响[J].西安交通大学学报,2020,54(07):094-103+128.[doi:10.7652/xjtuxb202007012]
 XUE Wensong,LI Jun,CHEN Yang,et al.Effects of Transverse Distance and Cross Section Shape on Aerodynamic Performance of Tangential Admission Volute of Steam Turbine[J].Journal of Xi'an Jiaotong University,2020,54(07):094-103+128.[doi:10.7652/xjtuxb202007012]
点击复制

横向间距和截面形状对汽轮机切向进气蜗壳气动性能的影响
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第07期
页码:
094-103+128
栏目:
出版日期:
2020-07-08

文章信息/Info

Title:
Effects of Transverse Distance and Cross Section Shape on Aerodynamic Performance of Tangential Admission Volute of Steam Turbine
文章编号:
0253-987X(2020)07-0094-10
作者:
薛文松1 李军1 陈阳2 白昆仑2 田朝阳2
1.西安交通大学叶轮机械研究所, 710049, 西安; 2.东方汽轮机有限公司产品研发中心, 618000, 四川德阳
Author(s):
XUE Wensong1 LI Jun1 CHEN Yang2 BAI Kunlun2 TIAN Chaoyang2
1. Institute of Turbomachinery, Xi’an Jiaotong University, Xi’an 710049, China; 2. Product Research & Development Center, Dongfang Turbine Co. Ltd., Deyang, Sichuan 618000, China
关键词:
汽轮机 切向进气蜗壳 气动性能 数值模拟
Keywords:
steam turbine tangential admission volute aerodynamic performance numerical simulation
分类号:
TK269
DOI:
10.7652/xjtuxb202007012
文献标志码:
A
摘要:
为了降低蜗壳总压损失并提高出口气流均匀性,对影响切向进汽蜗壳的气动特性和流场形态的因素进行了研究。采用数值方法求解了三维RANS方程和SST湍流模型,分析了横向间距和截面形状对汽轮机切向进气蜗壳气动性能的影响。数值模拟得到的部分切向进气蜗壳的质量流量和出口马赫数与实验测量数据一致,验证了数值方法的可靠性。对比分析了不同进口总压下5种切向进气蜗壳耦合静叶结构的气动性能参数和流场型态,结果表明:5种进气蜗壳耦合静叶结构的出口气流角基本不随进气总压的增加而改变; 5种进气蜗壳耦合静叶结构的总压损失系数和质量流量会随着进气总压的增加而增加; 进气蜗壳出口气流角随着横向间距的增加而增加,圆特征截面进气蜗壳出口气流角大于类多边形特征截面进气蜗壳的; 随着横向间距的增加,5种进气蜗壳耦合静叶结构的蜗壳总压损失系数增加,静叶总压损失系数减小,进气蜗壳耦合静叶结构的总压损失系数先减小后增加; 进气蜗壳截面形状对总压损失系数的影响明显大于横向间距的,类多边形特征截面蜗壳的总压损失系数明显大于圆特征截面蜗壳的; 静叶出口气流角几乎不受横向间距和特征截面的影响; 圆特征截面切向进气蜗壳耦合静叶结构具有最低的总压损失系数,圆特征截面完全切向进气蜗壳耦合静叶结构在蜗壳出口具有最佳的出口气流角周向分布均匀性。
Abstract:
To reduce the total pressure loss of the tangential admission volute and improve the uniformity of outlet air flow, the factors affecting the aerodynamic characteristics and flow field of the tangential admission volute are investigated. The effects of transverse distance and cross section shape on the aerodynamic performance of the tangential admission volute of steam turbine are numerically evaluated with the three-dimensional RANS equations and SST turbulence model. The obtained numerical mass flow rate and outlet Mach number of the partial alignment tangential admission volute coincide well with the experimental data to verify the accuracy of the numerical approach. The flow fields and aerodynamic parameters of five kinds of tangential admission volutes coupled with stationary vanes are compared and discussed under different inlet total pressure conditions. The results show that the outlet flow angles of five kinds of tangential admission volutes with stationary vanes almost remain constant with the increase of the inlet total pressure. The total pressure loss coefficient and mass flow rate of five kinds of tangential admission volutes with stationary vanes increase with the increasing inlet total pressure. The outflow angle of tangential admission volute increases with the increasing transverse distance. The outflow angle of the tangential admission volute with circular cross section is larger than that with the polygon cross section under the same flow conditions. With the increasing transverse distance, the total pressure loss of the individual tangential admission volute increases and the total pressure in the vane decreases. With the increasing transverse distance, the total pressure loss of five kinds of tangential admission volutes coupled with stationary vanes decreases at first and then increases. The influence of the cross section on the total pressure loss of the tangential admission volute is greater than that of transverse distance. The total pressure loss of the tangential admission volute with polygon cross section is obviously higher than that with circular cross section. The transverse distance and the cross section shape hardly influence the outflow angle from the stationary vane. The smallest total pressure loss coefficient of the partial alignment tangential admission volute with circular cross section is obtained among five kinds of tangential admission volutes. The optimum distribution uniformity of the outflow angle of the perfect alignment tangential admission volute with circular cross section is achieved among five kinds of tangential admission volutes.

参考文献/References:

[1] DENTON J D. The 1993 IGTI scholar lecture: loss mechanisms in turbomachines [J]. Journal of Turbomachinery, 1993, 115(4): 621-656.
[2] JI C. Advances in steam path technology [J]. ASME Journal of Engineering for Gas Turbines and Power, 1996, 118(2): 337-352.
[3] WALLIS A M, DENTON J D, DEMARGNE A A J. The control of shroud leakage flows to reduce aerodynamic losses in a low aspect ratio, shrouded axial flow turbine [C]∥Proceedings of ASME Conference on ASME Turbo Expo 2000: Power for Land, Sea, and Air. New York, USA: ASME, 2000: V001T03A 046.
[4] GIER J, STUBERT B, BROUILLET B, et al. Interaction of shroud leakage flow and main flow in a three-stage LP turbine [C]∥Proceedings of ASME Conference on ASME Turbo Expo 2003: Collocated with the 2003 International Joint Power Generation Conference. New York, USA: ASME, 2009: 105-116.
[5] IDELCHIK I E. Handbook of hydraulic resistance [M]. Washington DC, USA: Hemisphere Publishing Corporation, 1986: 662.
[6] ENGELMANN D, KALKKUHL T J, POLKLAS T, et al. Influence of shroud cavity jet and steam admission through a circumferential slot on the flow field in a steam turbine [C]∥Proceedings of ASME Conference on ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. New York, USA: ASME, 2013: 433-442.
[7] ENGELMANN D, SCHRAMM A, POLKLAS T, et al. Enhanced loss prediction for admission through circumferential slots in axial steam turbines [C]∥Proceedings of the 10th European Turbomachinery Conference. Lappeenranta, Finland: Lappeenranta University of Technology, 2013: 350-359.
[8] ENGELMANN D, SCHRAMM A, POLKLAS T, et al. Losses of steam admission in industrial steam turbines depending on geometrical parameters [C]∥Proceedings of ASME Conference on ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. New York, USA: ASME, 2014: V01BT27A003.
[9] NETTIS L, IMPARATO E, COSI L. Optimization of a large injection system for steam turbines [C]∥Proceedings of ASME Conference on ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. New York, USA: ASME, 2015: V008T26A024.
[10] HECKER S, ROHE A, STOFF H. Steam turbine inlet geometry from a structural and fluid dynamics point of view [C]∥Proceedings of ASME Conference on ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. New York, USA: ASME, 2013: 487-495.
[11] SCHRAMM A, MüLLER T, POLKLAS T, et al. Improvement of flow conditions for the stages subsequent to extraction modules in industrial steam turbines [C]∥Proceedings of ASME Conference on ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. New York, USA: ASME, 2014: V01BT27A008.
[12] PAZZI S, MICHELASSI V. Analysis and design outlines of centrifugal compressor inlet volutes [C]∥Proceedings of ASME Conference on ASME Turbo Expo 2000: Power for Land, Sea, and Air. New York, USA: ASME, 2014: V001T03A037.
[13] 张怀宇, 王晨瑜, 谢雷, 等. 大型汽轮机宽负荷运行时进汽部分性能对比分析 [J]. 汽轮机技术, 2016, 58(6): 459-460.
ZHANG Huaiyu, WANG Chenyu, XIE Lei, et al. Analysis on aerodynamic performances of inlet structure at a wide load range condition for large steam turbine [J]. Turbine Technology, 2016, 58(6): 459-460.
[14] 姚宏, 周逊, 王仲奇. 工业汽轮机补汽结构对压力损失的影响及优化 [J]. 西安交通大学学报, 2016, 50(7): 18-25.
YAO Hong, ZHOU Xun, WANG Zhongqi. Optimization design and pressure losses of steam admission in industrial steam turbines depending on geometrical parameters [J]. Journal of Xi’an Jiaotong University, 2016, 50(7): 18-25.
[15] 王健, 刘云锋, 马天吟. 两种进汽结构气动性能的数值研究 [J]. 汽轮机技术, 2016, 58(2): 93-94.
WANG Jian, LIU Yunfeng, MA Tianyin. Numerical investigation on aerodynamics performance between two different inlet structures [J]. Turbine Technology, 2016, 58(2): 93-94.
[16] 钟主海, 江生科. 汽轮机高压缸进汽蜗壳的数值研究 [J]. 东方汽轮机, 2016(2): 17-22.
ZHONG Zhuhai, JIANG Shengke. Numerical investigation on steam admission volute of turbine high pressure cylinder [J]. Dongfang Turbine, 2016(2): 17-22.
[17] 邵卫东, 吴方松, 李伯武, 等. 汽轮机低压进汽结构气动性能分析与优化设计 [J]. 热力透平, 2017, 46(2): 69-75.
SHAO Weidong, WU Fangsong, LI Bowu, et al. Optimization design and analysis of steam admission in low pressure cylinder of steam turbines [J]. Thermal Turbine, 2017, 46(2): 69-75.
[18] KANG S Y, LEE J J, KIM T S, et al. Numerical analysis on the impact of inter-stage flow addition in a high-pressure steam turbine [C]∥Proceedings of 2017 ASME Fluids Engineering Division Summer Meeting. New York, USA: ASME, 2017: V01AT03A029.
[19] 潘阳, 袁奇, 朱光宇. 进汽结构对部分进汽损失的影响研究 [J]. 中国电机工程学报, 2018, 38(14): 4156-4164, 4321.
PAN Yang, YUAN Qi, ZHU Guangyu. Numerical investigation on the influence of inlet structure on partial-admission losses [J]. Proceedings of the CSEE, 2018, 38(14): 4156-4164, 4321.

相似文献/References:

[1]李春国,王新军,王贤钢,等.汽轮机静叶栅中水滴运动与沉积规律的数值研究[J].西安交通大学学报,2008,42(09):1076.[doi:10.7652/xjtuxb200809004]
 LI Chunguo,WANG Xinjun,WANG Xiangang,et al.Numerical Investigation of Movement and Deposition of Water Droplets on Steam Turbine Stator Cascade[J].Journal of Xi'an Jiaotong University,2008,42(07):1076.[doi:10.7652/xjtuxb200809004]
[2]李春国,王新军,关盼龙,等.汽轮机静叶表面水膜缝隙抽吸的试验研究[J].西安交通大学学报,2009,43(01):020.[doi:10.7652/xjtuxb200901005]
 LI Chunguo,WANG Xinjun,GUAN Panlong,et al.Experimental Study on Removal of Water Film from Steam Turbine Stator Blade Surfaces by Suction Slots[J].Journal of Xi'an Jiaotong University,2009,43(07):020.[doi:10.7652/xjtuxb200901005]
[3]屈焕成,张荻,谢永慧,等.汽轮机调节级非定常流动的数值模拟及汽流激振力研究[J].西安交通大学学报,2011,45(11):039.[doi:10.7652/xjtuxb201111008]
 QU Huancheng,ZHANG Di,XIE Yonghui,et al. Numerical Simulation of Unsteady Flow Phenomena and Excitation Force in Control Stage of Steam Turbine[J].Journal of Xi'an Jiaotong University,2011,45(07):039.[doi:10.7652/xjtuxb201111008]
[4]潘家成,徐亮,高建民,等.轴向间距对二次水滴运动特性及沉积规律的影响[J].西安交通大学学报,2012,46(07):001.[doi:10.7652/xjtuxb201207001]
 PAN Jiacheng,XU Liang,GAO Jianmin,et al.Influence of Axial Clearance on Movement Characteristic and Deposition of Secondary Droplets[J].Journal of Xi'an Jiaotong University,2012,46(07):001.[doi:10.7652/xjtuxb201207001]
[5]邵帅,邓清华,时和双,等.不同容积流量下汽轮机低压缸末三级定常流动数值研究[J].西安交通大学学报,2013,47(01):015.[doi:10.7652/xjtuxb201301004]
 SHAO Shuai,DENG Qinghua,SHI Heshuang,et al.Numerical Investigation on Flow Characteristics in Steam Turbine Low Pressure Cylinder and LPEH under Different Volume Flow Rate Conditions[J].Journal of Xi'an Jiaotong University,2013,47(07):015.[doi:10.7652/xjtuxb201301004]
[6]李瑜,宁德亮,李亮,等.汽轮机中湿汽损失的定量计算[J].西安交通大学学报,2014,48(01):025.[doi:10.7652/xjtuxb201401005]
 LI Yu,NING Deliang,LI Liang,et al.Quantitative Evaluation of Wetness Losses in Steam Turbine[J].Journal of Xi'an Jiaotong University,2014,48(07):025.[doi:10.7652/xjtuxb201401005]
[7]张超,徐自力,刘石,等.采用热固双向耦合模型的转子热应力计算方法研究[J].西安交通大学学报,2014,48(04):068.[doi:10.7652/xjtuxb201404012]
 ZHANG Chao,XU Zili,LIU Shi,et al.Steam Turbine Rotor Thermal Stress Calculation with Thermo-Structural Coupled Model[J].Journal of Xi'an Jiaotong University,2014,48(07):068.[doi:10.7652/xjtuxb201404012]
[8]薛文松,陈阳,李军,等.汽轮机切向进气蜗壳气动性能研究[J].西安交通大学学报,2020,54(01):125.[doi:10.7652/xjtuxb202001016]
 XUE Wensong,CHEN Yang,LI Jun,et al.Investigation on the Aerodynamic Performance of the Steam Turbine Tangential Admission Volute[J].Journal of Xi'an Jiaotong University,2020,54(07):125.[doi:10.7652/xjtuxb202001016]

备注/Memo

备注/Memo:
收稿日期: 2020-01-06。作者简介: 薛文松(1994—),男,硕士生; 李军(通信作者),男,教授,博士生导师。基金项目: 国家自然科学基金资助项目(51776151)。
更新日期/Last Update: 2020-07-10