[1]张子鼎,梁兴雨,王亚军,等.金属泡沫型微粒捕集器中颗粒物沉积特性试验研究[J].西安交通大学学报,2020,54(07):075-83.[doi:10.7652/xjtuxb202007010]
 ZHANG Ziding,LIANG Xingyu,WANG Yajun,et al.Experimental Study on the Deposition Characteristics of Particulate Matter in Metal Foam Particulate Filter[J].Journal of Xi'an Jiaotong University,2020,54(07):075-83.[doi:10.7652/xjtuxb202007010]
点击复制

金属泡沫型微粒捕集器中颗粒物沉积特性试验研究
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第07期
页码:
075-83
栏目:
出版日期:
2020-07-08

文章信息/Info

Title:
Experimental Study on the Deposition Characteristics of Particulate Matter in Metal Foam Particulate Filter
文章编号:
0253-987X(2020)07-0075-09
作者:
张子鼎1 梁兴雨1 王亚军1 王月森1 李振国2 张志军3
1.天津大学内燃机燃烧学国家重点实验室, 300072, 天津; 2.中国汽车技术研究中心有限公司, 300300, 天津; 3.中国北方发动机研究所, 300400, 天津
Author(s):
ZHANG Ziding1 LIANG Xingyu1 WANG Yajun1 WANG Yuesen1 LI Zhenguo2 ZHANG Zhijun3
1. State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China; 2. China Automotive Technology Research Center Co. Ltd., Tianjin 300300, China; 3. China North Engine Research Institute, Tianjin 300400, China
关键词:
金属泡沫 微粒捕集器 颗粒物 沉积特性
Keywords:
metal foam particulate filter particulate matter deposition characteristics
分类号:
TK427
DOI:
10.7652/xjtuxb202007010
文献标志码:
A
摘要:
为了探究金属泡沫中颗粒物的沉积过程及沉积特性,自行设计开发了颗粒物快速加载系统,结合体式显微镜图像表征方法,在颗粒物加载量为1.5 g/h条件下研究了平均孔径为350 μm的径向型金属泡沫微粒捕集器中颗粒物沉积特性随时间及沉积深度的变化关系。结果表明:燃烧器生成的颗粒物与实际发动机的颗粒物粒径相近,金属泡沫捕集器沉积过程中始终存在深床沉积; 颗粒物质量沉积速率先增加后稳定,压降增加先快后慢,碳烟质量浓度捕集效率可达82%; 大部分颗粒物沉积在第1层滤芯中,末端第1层滤芯上堵塞最严重,颗粒物覆盖面积逐层减小,沉积均匀度沿径向递减; 圆筒上颗粒物覆盖面积占比沿进气方向逐渐增大,第1层最末端近100%,由内至外逐层减小,孔隙则逐层增大。研究结果揭示了金属泡沫型微粒捕集器中颗粒物动态沉积过程及沉积特性变化规律,可为金属泡沫型微粒捕集器后续研究提供理论基础。
Abstract:
To investigate the deposition process and deposition characteristics of the particulates in metal foam, a rapid loading system for particulates was designed. Combined with the stereo microscope image characterization method, the relationships of particle deposition characteristics in the radial metal foam(the average diameter of pores is 350 μm)particulate filter with time and depth were studied. The results show that the diameters of the particles from the burner are similar to that from the actual engine, and there is always a deep-bed filtration during the particle deposition in the metal foam. The deposition rate of the particles increases first with time and then becomes stable. The pressure drop increases rapidly first and then slows down. The filtration efficiency of the soot is up to 82%. Most of the particles are deposited in the first layer of the filter, which has the most severe blockage, the coverage area is reduced layer by layer, and the uniformity of deposition decreases along the radial direction. The proportion of the area covered by the particles on the sleeve gradually increases along the direction of the exhaust gas flow. At the end of the first layer, the proportion of the area covered by the particles is up to 100%. The coverage of the particles is reduced from the inside to the outside, and the pores become larger layer by layer. The results reveal the dynamic deposition process of the particulates and the change rule of deposition characteristics in the metal foam particulate filter, which provides a theoretical basis for the subsequent research of the metal foam particulate filters.

参考文献/References:

[1] KOLTSAKI G C, KATSAOUNIS D K, MARKOMANOLAKIS I A et al. Design and application of catalyzed metal foam particulate filters: SAE 2006-01-3284 [R]. Washington, DC, USA: SAE, 2006.
[2] KOLTSAKI G C, KATSAOUNIS D K, SAMARAS Z C, et al. Filtration and regeneration performance of a catalyzed metal foam particulate filter: SAE 2006-01-1524 [R]. Washington, DC, USA: SAE, 2006.
[3] KOLTSAKI G C, KATSAOUNIS D K, SAMARAS Z C, et al. Development of metal foam based aftertreatment system on a diesel passenger car: SAE 2008-01-0619 [R]. Washington, DC, USA: SAE, 2008.
[4] KOLTSAKI G C, KATSAOUNIS D K, MARKOMANOLAKIS I A, et al. Metal foam substrate for DOC and DPF applications: SAE 2007-01-0659 [R]. Washington, DC, USA: SAE, 2007.
[5] LEE J M, SUNG N W, CHO G B, et al. Performance of radial type metal foam diesel particulate filters [J]. International Journal of Automotive Technology, 2010, 11(3): 307-316.
[6] CHO G, CHOI H, JEONG Y, et al. PM reduction performance and regeneration characteristics of catalyzed metal foam filters for a 3L diesel passenger vehicle: SAE 2007-01-3456 [R]. Washington, DC, USA: SAE, 2007.
[7] MYUNG C L, KIM J, JANG W, et al. Nanoparticle filtration characteristics of advanced metal foam media for a spark ignition direct injection engine in steady engine operating conditions and vehicle test modes [J]. Energies, 2015, 8(3): 1865-1881.
[8] CHOI K, KIM J, KO A, et al. Size-resolved engine exhaust aerosol characteristics in a metal foam particulate filter for GDI light-duty vehicle [J]. Journal of Aerosol Science, 2013, 57: 1-13.
[9] BAEK S, JIN D, JANG W, et al. Evaluation of the time-resolved nanoparticle emissions and the vehicle performance characteristics for a turbocharged gasoline direct-injection vehicle with a metal-foam gasoline particulate filter [J]. Journal of Automobile Engineering, 2016, 230(6): 745-753.
[10] PONTIKAKIS G N, KOLTSAKI G C, STAMATELOS A M. Dynamic filtration modeling in foam filters for diesel exhaust [J]. Chemical Engineering Communications, 2001, 188(1): 21-46.
[11] OHARA E, MIZUNO Y, MIYAIRI Y, et al. Filtration behavior of diesel particulate filters: 1: SAE 2007-01-0921 [R]. Washington, DC, USA: SAE, 2007.
[12] MCGEEHAN J A, YEH S, COUCH M, et al. On the road to 2010 emissions: field test results and analysis with DPF-SCR system and ultra low sulfur diesel fuel [C/OL]∥Powertrain & Fluid Systems Conference & Exhibition. [2019-09-25].10.4271/2005-01-3716.
[13] CHOI S, KYEONG L. Detailed investigation of soot deposition and oxidation characteristics in a diesel particulate filter using optical visualization: SAE 2013-01-0528 [R]. Washington, DC, USA: SAE, 2013.
[14] WURZENBERGER J C, SUSANNE K, ASTRID N. Ash transport and deposition, cake formation and segregation-a modeling study on the impact of ash on particulate filter performance: SAE 2019-01-0988 [R]. Washington, DC, USA: SAE, 2019.
[15] LI Z, LI Z, WU Y, et al. A simulation study on particle deposition and filtration characteristics in wall-flow DPF with inhomogeneous wall structure using a two-dimensional microcosmic model: SAE 2019-01-0995 [R]. Washington, DC, USA: SAE, 2019.
[16] DAIDO S, NOBUYUKI T. Visualization of the PM deposition and oxidation behavior inside the DPF wall: SAE 2009-01-1473 [R]. Washington, DC, USA: SAE, 2009.
[17] 孟忠伟, 宋蔷, 姚强, 等. 柴油机颗粒捕集器内颗粒沉积结构的实验研究 [J]. 燃烧科学与技术, 2012, 18(1): 20-26.
MENG Zhongwei, SONG Qiang, YAO Qiang, et al. Experimental investigation on deposition configuration of soot layer in diesel particle filter [J]. Journal of Combustion Science and Technology, 2012, 18(1): 20-26.
[18] DU Y, MENG Z, FANG J, et al. Characterization of soot deposition and oxidation process on catalytic diesel particulate filter with ash loading through an optimized visualized method [J]. Fuel, 2019, 243: 251-261.
[19] 孟忠伟, 杜雨恒, 李鉴松, 等. 模拟碳烟在DPF过滤壁面上沉积特性的试验 [J]. 内燃机学报, 2019, 37(3): 257-264.
MENG Zhongwei, DU Yuheng, LI Jiansong, et al. Experimental investigation on characterization of simulation soot deposited on diesel particulate filter [J]. Transactions of CSICE, 2019, 37(3): 257-264.
[20] MENG Z, FANG J, PU Y, et al. Experimental study on the influence of DPF micropore structure and particle property on its filtration process [J]. Journal of Combustion, 2016, 2016: 1-12
[21] LAPUERTA M, MARTOS F J, HERREROS J M. Effect of engine operating conditions on the size of primary particles composing diesel soot agglomerates [J]. Journal of Aerosol Science, 2007, 38(4): 455-466.
[22] 郝斌. 不同燃料对柴油机排气颗粒物的影响研究 [D]. 天津: 天津大学, 2014.
[23] XU Z, LI X, GUAN C, et al. Effects of injection timing on exhaust particle size and nanostructure on a diesel engine at different loads [J]. Journal of Aerosol Science, 2014, 76: 28-38.

相似文献/References:

[1]白青松,郭增旭,刘亦琳,等.通孔金属泡沫强化蓄冰实验研究[J].西安交通大学学报,2018,52(01):020.[doi:10.7652/xjtuxb201801004]
 BAI Qingsong,GUO Zengxu,LIU Yilin,et al.Experimental Study on Enhanced Ice Storage in OpenCell Metal Foams[J].Journal of Xi'an Jiaotong University,2018,52(07):020.[doi:10.7652/xjtuxb201801004]
[2]郭增旭,白青松,杨肖虎,等.不同倾角下通孔金属泡沫强化蓄热实验研究[J].西安交通大学学报,2019,53(01):157.[doi:10.7652/xjtuxb201901021]
 GUO Zengxu,BAI Qingsong,YANG Xiaohu,et al.Experimental Investigation on the Heat Storage Enhancement of? Phase Change Materials Embedded in OpenCell Metal Foam in? an Inclined Rectangular Enclosure[J].Journal of Xi'an Jiaotong University,2019,53(07):157.[doi:10.7652/xjtuxb201901021]
[3]陈康,陈鹏飞,李文升,等.电沉积金属泡沫内的渗透流动特性[J].西安交通大学学报,2020,54(05):087.[doi:10.7652/xjtuxb202005012]
 CHEN Kang,CHEN Pengfei,LI Wengsheng,et al.Permeation Characteristics of Electrodeposited Metal Foam[J].Journal of Xi'an Jiaotong University,2020,54(07):087.[doi:10.7652/xjtuxb202005012]

备注/Memo

备注/Memo:
收稿日期: 2019-10-19。作者简介: 张子鼎(1994—),男,硕士生; 梁兴雨(通信作者),男,教授。基金项目: 国家自然科学基金资助项目(51976135,51806148); 移动源污染排放控制技术国家工程实验室开放基金资助项目(NELMS2017A02)。
更新日期/Last Update: 2020-07-10