[1]杨尚升,黄勇成,曹银波.停缸技术对缸内直喷点燃式发动机燃烧与排放及燃油经济性的影响[J].西安交通大学学报,2020,54(07):068-74.[doi:10.7652/xjtuxb202007009]
 YANG Shangsheng,HUANG Yongcheng,CAO Yinbo.Influence of Cylinder Deactivation(CDA)on Combustion and Emission Characteristics and Fuel Economy of Direct-Injection Spark-Ignition Engine[J].Journal of Xi'an Jiaotong University,2020,54(07):068-74.[doi:10.7652/xjtuxb202007009]
点击复制

停缸技术对缸内直喷点燃式发动机燃烧与排放及燃油经济性的影响
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第07期
页码:
068-74
栏目:
出版日期:
2020-07-08

文章信息/Info

Title:
Influence of Cylinder Deactivation(CDA)on Combustion and Emission Characteristics and Fuel Economy of Direct-Injection Spark-Ignition Engine
文章编号:
0253-987X(2020)07-0068-07
作者:
杨尚升1 黄勇成1 曹银波2
1.西安交通大学能源与动力工程学院, 710049, 西安; 2.联合电子汽车有限公司, 201206, 上海
Author(s):
YANG Shangsheng1 HUANG Yongcheng1 CAO Yinbo2
1. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China; 2. United Automotive Electronic System Co. Ltd., Shanghai 201206, China
关键词:
点燃式发动机 停缸 燃油经济性 燃烧特性 排放特性
Keywords:
spark-ignition engine cylinder deactivation(CDA) fuel economy combustion
分类号:
TK411.2
DOI:
10.7652/xjtuxb202007009
文献标志码:
A
摘要:
为了定量阐明采用停缸(CDA)技术改善发动机部分负荷工况燃油经济性的机理,通过台架试验对CDA发动机在停缸和全缸模式下的燃烧与排放及燃油经济性进行了研究,并结合数值模拟方法对CDA发动机的能量平衡进行了定量分析,以确定各因素对节油的影响。结果表明:与全缸模式相比,在停缸模式下工作缸滞燃期和燃烧持续期缩短,最高缸内压力和最大瞬时放热率增加,燃烧循环变动降低; HC和CO排放降低,但NOx排放增加。在试验工况下,CDA发动机节油率为8.2%~15.8%,其中缸内传热损失和泵气损失减少,两者节油贡献率分别为80%~111.9%和30.3%~37.4%,而摩擦损失和排气能量增加,两者节油贡献率分别为-9.2%~-20.3%和-1.2%~-26.5%。因此,缸内传热损失减少是CDA发动机最主要的节油因素。
Abstract:
To quantitatively expound the mechanism of using cylinder deactivation(CDA)technology to improve the partial-load fuel economy of a direct-injection spark-ignition engine, bench test was carried out to investigate the combustion and emission characteristics and fuel economy of the engine in the CDA and full-cylinder modes. Moreover, numerical simulation was used to quantitatively analyze the energy balance and determine the effects of various factors on fuel saving of the CDA engine. The results show that, in comparison with the full-cylinder mode, the ignition delay and combustion duration are shortened, the peak values of the in-cylinder pressure and heat release rate are increased, and the cyclic variation of combustion is reduced in the CDA mode. In addition, HC and CO emissions are reduced, while NOx emissions are increased in the CDA mode. Under the test conditions, the fuel economy of the CDA engine is improved by 8.2% to 15.8%. In comparison with the full-cylinder mode, the in-cylinder heat-transfer losses and pumping losses in the CDA mode are reduced, which contributes to the fuel saving rates by 80% to 111.9% and 30.3% to 37.4%, respectively. While the friction losses and exhaust energy are increased, resulting in the decrease in the fuel saving rates by -9.2% to -20.3% and -1.2% to -26.5%, respectively. Therefore, the reduction of in-cylinder heat-transfer losses is the most important fuel-saving factor for CDA engines.

参考文献/References:

[1] 丁明峰. 可变排量技术在直喷汽油机上应用的研究 [D]. 长春: 吉林大学, 2015.
[2] 武聪山. 四缸汽油机停缸曲轴扭振特性研究 [D]. 天津: 天津大学, 2017.
[3] 胡茂杨, 常思勤, 刘梁, 等. 车用汽油机停缸时循环功耗研究 [J]. 中国机械工程, 2019, 30(1): 46-52.
HU Maoyang, CHANG Siqin, LIU Liang, et al. Study on cycle’s energy losses of vehicle gasoline engine for CDA [J]. China Mechanical Engineering, 2019, 30(1): 46-52.
[4] 杨文海. GDI发动机可变排量技术的研究 [D]. 长春: 吉林大学, 2017.
[5] 钱冬羽. 停缸技术对汽油发动机油耗及运行参数的影响 [J]. 汽车实用技术, 2019(18): 170-173.
QIAN Dongyu. The research of stop cylinder technology in gasoline engine [J]. Automobile Applied Technology, 2019(18): 170-173.
[6] 王凌峰, 朱小春, 刘宏江, 等. 汽油机停缸技术的燃油经济性研究 [J]. 内燃机, 2019(2): 55-57.
WANG Lingfeng, ZHU Xiaochun, LIU Hongjiang, et al. Study on performance of gasoline engine with cylinder deactivation [J]. Internal Combustion Engines, 2019(2): 55-57.
[7] KURUPPU C, PESIRIDIS A, RAJOO S. Investigation of cylinder deactivation and variable valve actuation on gasoline engine performance: SAE Paper 2014-01-1170 [R]. New York, USA: SAE, 2014.
[8] ZHAO Jinxing, XI Qingyuan, WANG Shuwen, et al. Improving the partial-load fuel economy of 4-cylinder SI engines by combining variable valve timing and cylinder-deactivation through double intake manifolds [J]. Applied Thermal Engineering, 2018, 141: 245-256.
[9] BATES B, DOSDALL J, SMITH D. Variable displacement by engine valve control: SAE Paper 780145 [R]. New York, USA: SAE, 1978.
[10] MUELLER R, UITVLUGT M. Valve selector hardware: SAE Paper 780146 [R]. New York, USA: SAE, 1978.
[11] FUJIWARA M, KUMAGA K, SEGAWA M, et al. Development of a 6-cylinder gasoline engine with new variable cylinder management technology: SAE Paper 2008-01-0610 [R]. New York, USA: SAE, 2008.
[12] HUBER R, KLUMPP P, ULBRICH H. Dynamic analysis of the Audi valvelift system [J]. SAE International Journal of Engines, 2010, 3(1): 839-849.
[13] 韩宗奇. 轿车发动机变工作排量技术与应用研究 [D]. 秦皇岛: 燕山大学, 2010.
[14] CHOI M, KWAK Y-H, ROTH D B, et al. Synergies of cooled external EGR, water injection, miller valve events and cylinder deactivation for the improvement of fuel economy on a turbocharged-GDI engine: part 2 Engine testing: SAE Paper 2019-01-0242 [R]. New York, USA: SAE, 2019.
[15] MUHAMAD S M, ABDUL A A, ABDUL L Z, et al. Investigation of cylinder deactivation(CDA)strategies on part load conditions: SAE Paper 2014-01-2549 [R]. New York, USA: SAE, 2014.

相似文献/References:

[1]宫长明,李骏,于秀敏,等.冷起动时甲醇掺烧液化气发动机的甲醛和未燃甲醇排放[J].西安交通大学学报,2010,44(05):021.[doi:10.7652/xjtuxb201005005]
 GONG Changming,LI Jun,YU Xiumin,et al.Emissions of Formaldehyde and Unburned Methanol from a Methanol Enginewith Liquefied Petroleum Gas as Ignition Improver During Cold Start[J].Journal of Xi'an Jiaotong University,2010,44(07):021.[doi:10.7652/xjtuxb201005005]

备注/Memo

备注/Memo:
收稿日期: 2020-01-16。作者简介: 杨尚升(1995—),男,硕士生; 黄勇成(通信作者),男,副教授。基金项目: 国家重点研发计划资助项目(2018YFB0105900)。
更新日期/Last Update: 2020-07-10