[1]许凡,陈朝阳,李昭,等.采用机器学习的二甲醚层流燃烧速度预测研究[J].西安交通大学学报,2020,54(07):062-67.[doi:10.7652/xjtuxb202007008]
 XU Fan,CHEN Zhaoyang,LI Zhao,et al.Prediction on the Laminar Burning Velocity of Dimethyl Ether/Air Mixtures Using Machine Learning[J].Journal of Xi'an Jiaotong University,2020,54(07):062-67.[doi:10.7652/xjtuxb202007008]
点击复制

采用机器学习的二甲醚层流燃烧速度预测研究
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第07期
页码:
062-67
栏目:
出版日期:
2020-07-08

文章信息/Info

Title:
Prediction on the Laminar Burning Velocity of Dimethyl Ether/Air Mixtures Using Machine Learning
文章编号:
0253-987X(2020)07-0062-06
作者:
许凡1 陈朝阳1 李昭1 李倩倩2
1.长安大学汽车学院, 710064, 西安; 2.西安交通大学能源与动力工程学院, 710049, 西安
Author(s):
XU Fan1 CHEN Zhaoyang1 LI Zhao1 LI Qianqian2
1. School of Automobile, Chang’an University, Xi’an 710064, China; (2. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
关键词:
层流燃烧速度 二甲醚 模型预测 机器学习 多变量回归
Keywords:
laminar burning velocity dimethyl ether model prediction machine learning
分类号:
TK411.2
DOI:
10.7652/xjtuxb202007008
文献标志码:
A
摘要:
为了明确二甲醚层流燃烧速度与混合气初始条件(温度、压力、当量比)之间的关系,基于大量的实验及数值模拟数据,利用机器学习多变量回归算法,建立了二甲醚/空气预混层流燃烧速度随初始条件的拟合关系式。通过与文献及数值模拟结果的对比,发现所建立的函数关系式能够在0.8~1.4当量比、298~373 K初始温度和0.1~1.0 MPa初始压力范围内得到准确的二甲醚层流燃烧速度预测结果。二甲醚层流燃烧速度随初始压力呈负指数关系,随初始温度呈正指数关系,化学当量比时,压力和温度指数的绝对值较小,混合气较浓或较稀时,压力和温度指数的绝对值增大,表明二甲醚层流燃烧速度随初始压力的增大而减小,随初始温度的升高而增大,且在较浓或者较稀的混合气条件下,层流燃烧速度随初始压力和温度的变化更为敏感。研究结果可以为二甲醚发动机数值模拟提供简单准确的层流燃烧速度输入数据,从而节约研究成本和计算时间。
Abstract:
To determine the relationship between laminar burning velocity of dimethyl ether(DME)/air mixture and the initial conditions(temperature, pressure, equivalence ratio), the calculation of laminar burning velocity of dimethyl ether/air mixture was formulated using the multivariate regression algorithm of machine learning based on the experimental and simulated results. By comparing with the results of literatures and numerical simulation, it is found that the formula can accurately predict the laminar burning velocity of dimethyl ether/air mixtures under the conditions with equivalence ratio range of 0.8 - 1.4, initial pressure range of 0.1 - 1.0 MPa and initial temperature range of 298 - 373 K. The laminar burning velocity of DME has negative exponent relationship with initial pressure but positive exponent relationship with initial temperature, which indicates a decrease of laminar burning velocity of DME with the increase of initial pressure but an increase with the initial temperature. The absolute value of the pressure or temperature index is smaller in the stoichiometric condition, and the value increases as the mixture becomes richer or leaner, indicating a higher sensitivity of laminar burning velocity of DME to the initial pressure or initial temperature change in this condition. This study may provide simple and accurate input data of laminar burning velocity for the numerical simulation of DME engines to save research costs and calculation time.

参考文献/References:

[1] ARCOUMANIS C, BAE C, CROOKES R, et al. The potential of di-methyl ether(DME)as an alternative fuel for compression-ignition engines: a review [J]. Fuel, 2008, 87(7): 1014-1030.
[2] KIM M Y, YOON S H, RYU B W, et al. Combustion and emission characteristics of DME as an alternative fuel for compression ignition engines with a high pressure injection system [J]. Fuel, 2008, 87(8): 2779-2786.
[3] QIN X, JU Y. Measurements of burning velocities of dimethyl ether and air premixed flames at elevated pressures [J]. Proceedings of the Combustion Institute, 2005, 30(1): 233-240.
[4] FAGHIH M, LI H Y, GOU X L, et al. On laminar premixed flame propagating into autoigniting mixtures under engine-relevant conditions [J]. Proceedings of the Combustion Institute, 2019, 37(4): 4673-4680.
[5] ZHAO Z, KAZAKOV A, DRYER F L. Measurements of dimethyl ether/air mixture burning velocities by using particle image velocimetry [J]. Combustion and Flame, 2004, 139(1/2): 52-60.
[6] DALY C A, SIMMIE J M, JUDITH W, et al. Burning velocities of dimethyl ether and air [J]. Combustion and Flame, 2001, 125(4): 1329-1340.
[7] WANG Y L, HOLLEY A T, JI C, et al. Propagation and extinction of premixed dimethyl ether/air flames [J]. Proceedings of the Combustion Institute, 2009, 32(1): 1035-1042.
[8] CHEN Z Y, WEI L J, HUANG Z H, et al. Measurement of laminar burning velocities of dimethyl ether-air premixed mixtures with N2 and CO2 dilution [J]. Energy and Fuels, 2009, 23(2): 735-739.
[9] HUANG Z H, WANG Q, YU J R, et al. Measurement of laminar burning velocity of dimethyl ether-air premixed mixtures [J]. Fuel, 2007, 86(15): 2360-2366.
[10] ZHAO Z, CHAOS M, KAZAKOV A, et al. Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether [J]. International Journal of Chemical Kinetics, 2008, 40(1): 1-18.
[11] GUO H J, SUN W, HAAS F M, et al. Measurements of H2O2 in low temperature dimethyl ether oxidation [J]. Proceedings of the Combustion Institute, 2013, 34(1): 573-581.
[12] WANG Z, ZHANG X, XING L, et al. Experimental and kinetic modeling study of the low-and intermediate temperature oxidation of dimethyl ether [J]. Combustion and Flame, 2015, 162(4): 1113-1125.
[13] 田心如, 蔡凝昊, 张志薇. 基于气象因子及机器学习回归算法的夏季空调负荷预测 [J]. 气象科学, 2019, 39(4): 548-555.
TIAN Xinru, CAI Ninghao, ZHANG Zhiwei. Summer air-conditioning load forecasting in Nanjing based on meteorological factors and machine learning regression algorithm [J]. Journal of the Meteorological Sciences, 2019, 39(4): 548-555.
[14] 牛晓晓. 基于机器学习及智能算法的柴油机性能预测及优化研究 [D]. 哈尔滨: 哈尔滨工程大学, 2017.
[15] METGHALCHI M, KECK J C. Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature [J]. Combustion and Flame, 1982, 48: 191-210.
[16] 陈朝阳. 二甲醚及二甲醚掺混火焰预混层流燃烧基础研究 [D]. 西安: 西安交通大学, 2011.
[17] KEE R J, RUPLEY F M, MILLER J A. Chemkin-II: a Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics: SAND Report 89-8009 [R]. Albuquerque, NM, USA: Sandia National Laboratory, 1989.
[18] WU H, HU E J, YU H B, et al. Experimental and numerical study on the laminar flame speed of n-butane/dimethyl ether-air mixtures [J]. Energy and Fuels, 2014, 28(5): 3412-3419.
[19] GIBBS G J, CALCOTE H F. Effect of molecular structure on burning velocity [J]. Journal of Chemical and Engineering Data, 1959, 4(3): 226-237.
[20] 张波, 傅维标. 二甲醚火焰传播速度的实验研究 [J]. 燃烧科学与技术, 2005, 11(2): 163-166.
ZHANG Bo, FU Weibiao. Experimental study on laminar flame speeds of dimethyl ether and air mixtures [J]. Journal of Combustion Science and Technology, 2005, 11(2): 163-166.
[21] VRIES J D, LOWRY W B, SERINYEL Z, et al. Petersen laminar flame speed measurements of dimethyl ether in air at pressures up to 10 atm [J]. Fuel, 2011, 90: 331-338.

相似文献/References:

[1]陈朝阳,张春化,陈昊,等.当量比对二甲醚氧化分解过程的影响[J].西安交通大学学报,2014,48(05):032.[doi:10.7652/xjtuxb201405006]
 CHEN Zhaoyang,ZHANG Chunhua,CHEN Hao,et al.Influences of Equivalence Ratio on the Reaction Path of Dimethyl Ether[J].Journal of Xi'an Jiaotong University,2014,48(07):032.[doi:10.7652/xjtuxb201405006]
[2]于会宾,胡二江,杨柯,等.碳酸二甲酯层流火焰特性的实验和数值研究[J].西安交通大学学报,2014,48(11):025.[doi:10.7652/xjtuxb201411005]
 YU Huibin,HU Erjiang,YANG Ke,et al.Experimental and Numerical Research on Laminar Burning Characteristics of Premixed Dimethyl Carbonate / Air Flames[J].Journal of Xi'an Jiaotong University,2014,48(07):025.[doi:10.7652/xjtuxb201411005]
[3]徐昭华,胡二江,黄佐华.汽油层流燃烧速度的测量及其替代物模型研究[J].西安交通大学学报,2019,53(03):036.[doi:10.7652/xjtuxb201903006]
 XU Zhaohua,HU Erjiang,HUANG Zuohua.Research on the Laminar Burning Velocity and Surrogate?Models of Gasoline[J].Journal of Xi'an Jiaotong University,2019,53(07):036.[doi:10.7652/xjtuxb201903006]

备注/Memo

备注/Memo:
收稿日期: 2020-01-16。作者简介: 许凡(1994—),男,硕士生; 陈朝阳(通信作者),女,副教授,硕士生导师。基金项目: 国家自然科学基金资助项目(51506010); 中央高校基本科研业务费专项资金资助项目(300102229202)。
更新日期/Last Update: 2020-07-10