[1]李晓祥,王安麟,李晓田.非平稳随机循环工况下离合器接合过程的鲁棒控制[J].西安交通大学学报,2020,54(07):052-61.[doi:10.7652/xjtuxb202007007]
 LI Xiaoxiang,WANG Anlin,LI Xiaotian.Robust Control of Clutch Engagement Process under Non-Stationary Random Cyclic Conditions[J].Journal of Xi'an Jiaotong University,2020,54(07):052-61.[doi:10.7652/xjtuxb202007007]
点击复制

非平稳随机循环工况下离合器接合过程的鲁棒控制
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第07期
页码:
052-61
栏目:
出版日期:
2020-07-08

文章信息/Info

Title:
Robust Control of Clutch Engagement Process under Non-Stationary Random Cyclic Conditions
文章编号:
0253-987X(2020)07-0052-10
作者:
李晓祥 王安麟 李晓田
同济大学机械与能源工程学院, 201804, 上海
Author(s):
LI Xiaoxiang WANG Anlin LI Xiaotian
School of Mechanical Engineering, Tongji University, Shanghai 201804, China
关键词:
离合器 接合品质 最优轨迹 自适应滑模控制 Lyapunov理论
Keywords:
clutch engagement quality optimal trajectory ASMC Lyapunov stability theory
分类号:
TH623.9
DOI:
10.7652/xjtuxb202007007
文献标志码:
A
摘要:
针对离合器接合过程存在的非线性、外界干扰和参数不确定等因素带来的接合品质问题,提出了一种离合器接合过程的鲁棒控制方法。首先,以某5 t装载机V型工况重载后退换挡离合器接合过程为研究对象,在构建以冲击度和滑磨功为性能评价指标的多目标泛函基础上,依据Pontryagin极值原理和终端约束,求解干扰矩阵中包含参数化非平稳随机项的泛函极值,获得了其时变最优控制律和权值组合下的扭矩最优轨迹。其次,通过变量转换,将时变扭矩最优轨迹转化为非线性离合器液压执行机构参数摄动下的压力跟踪轨迹。最后,采用自适应滑模控制策略以提高系统的跟踪精度和鲁棒性能,并利用Lyapunov理论对其闭环系统的稳定性进行了分析。数值仿真结果表明:该方法能有效地降低冲击度和减少滑磨功,实现了在0.7%误差范围内的最优控制轨迹跟踪。所提出的非平稳随机循环工况下离合器接合过程时变扭矩轨迹优化及其跟踪鲁棒控制的方法,对解决同类问题具有一定的工程借鉴价值。
Abstract:
A robust control method for clutch engagement process is proposed for the engagement quality problem caused by the nonlinearity, external disturbance and parameter uncertainty in the clutch engagement process. Firstly, taking the clutch engagement process in the heavy-duty reverse shifting of a 5-ton loader in V-type working condition as the research object, a multi-objective functional with performance evaluation based on jerk and friction work is established. According to the Pontryagin’s maximum principle and terminal constraints, after solving the functional extremum of the parameterized non-stationary random terms in the disturbance matrix, the optimal trajectory of the torque under the time-varying optimal control law and weight combination is obtained. Secondly, through the variable transformation, the time-varying torque optimal trajectory is transformed into the pressure tracking trajectory of the nonlinear clutch hydraulic actuator with parameter perturbation. Finally, the adaptive sliding mode control(ASMC)strategy is adopted to improve the tracking accuracy and robust performance of the system, and the stability of the closed-loop system is analyzed by Lyapunov stability theory. Numerical simulation results show that the proposed method can effectively reduce the jerk and the friction work, achieve the optimal control trajectory tracking within 0.7% error.

参考文献/References:

[1] DELLA GATTA A, IANNELLI L, PISATURO M, et al. A survey on modeling and engagement control for automotive dry clutch [J]. Mechatronics, 2018, 55: 63-75.
[2] HARIA H, PIETRON G M, MEYER J, et al. In-vehicle characterization of wet clutch engagement behaviors in automatic transmission systems [J]. SAE International Journal of Passenger Cars: Electronic and Electrical Systems, 2018, 11(5): 369-375.
[3] SENATORE A. Advances in the automotive systems: an overview of dual-clutch transmissions [J]. Recent Patents on Mechanical Engineering, 2009, 2(2): 93-101.
[4] MISHRA K, SRINIVASAN K. Robust control and estimation of clutch-to-clutch shifts [J]. Control Engineering Practice, 2017, 65: 100-114.
[5] WAN Guoqiang, LI Keqiang, PEI Ling, et al. Optimal tracking control for automatic transmission shift process [J]. Journal of Beijing Institute of Technology, 2015, 24(4): 458-465.
[6] 葛安林, 吴锦秋, 郭万富. 自动控制离合器接合特性的研究 [J]. 吉林工业大学学报, 1988, 18(2): 70-80.
GE Anlin, WU Jinqiu, GUO Wanfu. Engaging characteristics of clutch under automatic control [J]. Journal of Jilin University of Technology, 1988, 18(2): 70-80.
[7] SANADA K, GAO B Z, KADO N, et al. Design of a robust controller for shift control of an automatic transmission [J]. Proceedings of the Institution of Mechanical Engineers: Part D Journal of Automobile Engineering, 2012, 226(12): 1577-1584.
[8] ZHAO Z G, LEI D, CHEN J Y, et al. Optimal control of mode transition for four-wheel-drive hybrid electric vehicle with dry dual-clutch transmission [J]. Mechanical Systems and Signal Processing, 2018, 105: 68-89.
[9] CHOI H, HWANG J, CHOI S. Dynamic driveline torque estimation during whole gear shift for an automatic transmission [J]. Mechanism and Machine Theory, 2018, 130: 363-381.
[10] LIU F Y, CHEN L, LI D X, et al. Improved clutch slip control for automated transmissions [J]. Proceedings of the Institution of Mechanical Engineers: Part C Journal of Mechanical Engineering Science, 2018, 232(18): 3181-3199.
[11] LI B G, SUN D Y, HU M H, et al. Automatic starting control of tractor with a novel power-shift transmission [J]. Mechanism and Machine Theory, 2019, 131: 75-91.
[12] PARK J, CHOI S, OH J, et al. Adaptive torque tracking control during slip engagement of a dry clutch in vehicle powertrain [J]. Mechanism and Machine Theory, 2019, 134: 249-266.
[13] WURM A, BESTLE D. Robust design optimization for improving automotive shift quality [J]. Optimization and Engineering, 2016, 17(2): 421-436.
[14] HAJ-FRAJ A, PFEIFFER F. Optimal control of gear shift operations in automatic transmissions [J]. Journal of the Franklin Institute, 2001, 338(2/3): 371-390.
[15] 彭建鑫, 金辉, 陈慧岩. 基于最优化理论的离合器接合曲线研究 [J]. 北京理工大学学报, 2009, 29(11): 964-967, 971.
PENG Jianxin, JIN Hui, CHEN Huiyan. Engagement curve of clutch based on optimization theory [J]. Transactions of Beijing Institute of Technology, 2009, 29(11): 964-967, 971.
[16] GLIELMO L, VASCA F. Optimal control of dry clutch engagement [J]. SAE Transactions, 2000, 109(6): 1233-1239.
[17] 陈清洪, 秦大同, 叶心. AMT重型汽车起步离合器最优控制 [J]. 中国公路学报, 2010, 23(1): 116-121.
CHEN Qinghong, QIN Datong, YE Xin. Optimal control about AMT heavy-duty truck starting clutch [J]. China Journal of Highway and Transport, 2010, 23(1): 116-121.
[18] 黄芳, 鲁统利, 吴明翔. 干式双离合器接合过程最优控制 [J]. 汽车工程学报, 2013, 3(3): 175-182.
HUANG Fang, LU Tongli, WU Mingxiang. Research on engaging process of dry dual-clutch based on optimality theory [J]. Chinese Journal of Automotive Engineering, 2013, 3(3): 175-182.
[19] ZHAO Z G, JIANG J L, YU Z P, et al. Starting sliding mode variable structure that coordinates the control and real-time optimization of dry dual clutch transmissions [J]. International Journal of Automotive Technology, 2013, 14(6): 875-888.
[20] KIM S, OH J, CHOI S. Gear shift control of a dual-clutch transmission using optimal control allocation [J]. Mechanism and Machine Theory, 2017, 113: 109-125.
[21] HAGGAG S A. Sliding mode adaptive PID control of an automotive clutch-by-wire actuator [J]. SAE International Journal of Passenger Cars: Electronic and Electrical Systems, 2016, 9(1): 424-433.
[22] LI J Q, WANG Y H, CHEN J W, et al. Study on oil pressure characteristics and trajectory tracking control in shift process of wet-clutch for electric vehicles [J]. Mathematical Problems in Engineering, 2016, 2016: 1-11.
[23] LI S H, WU C, SUN Z X. Design and implementation of clutch control for automotive transmissions using terminal-sliding-mode control and uncertainty observer [J]. IEEE Transactions on Vehicular Technology, 2016, 65(4): 1890-1898.
[24] SONG X Y, SUN Z X. Pressure-based clutch control for automotive transmissions using a sliding-mode controller [J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(3): 534-546.
[25] 李晓祥, 王安麟, 樊旭灿, 等. 非平稳随机循环工况离合器接合优化及跟踪控制 [J/OL]. 哈尔滨工业大学学报. [2019-12-05]. http:∥kns.cnki.net/kcms/detail/23.1235.t.20190929.1724.002.html.
LI Xiaoxiang, WANG Anlin, FAN Xucan, et al. Optimization and tracking control of the clutch engagement process under non-stationary random cyclic conditions [J/OL]. Journal of Harbin Institute of Technology. [2019-12-05]. http:∥kns.cnki.net/kcms/detail/23.1235.t.20190929.1724.002.html.
[26] 张元涛, 石为人, 李颍. 基于反演的不确定非线性系统自适应滑模控制 [J]. 华中科技大学学报(自然科学版), 2011, 39(7): 88-91.
ZHANG Yuantao, SHI Weiren, LI Ying. Backstepping-based adaptive sliding mode control of uncertain nonlinear systems [J]. Journal of Huazhong University of Science and Technology(Nature Science), 2011, 39(7): 88-91.
[27] XU L, YAO B. Adaptive robust control of mechanical systems with non-linear dynamic friction compensation [J]. International Journal of Control, 2008, 81(2): 167-176.
[28] 徐张宝, 马大为, 姚建勇, 等. 采用干扰估计的液压系统自适应鲁棒控制 [J]. 西安交通大学学报, 2016, 50(8): 123-129.
XU Zhangbao, MA Dawei, YAO Jianyong, et al. An adaptive robust control algorithm for hydraulic actuators with disturbance estimation [J]. Journal of Xi’an Jiaotong University, 2016, 50(8): 123-129.
[29] 高强, 朱玉川, 王睿, 等. 高速开关阀控电液位置伺服系统自适应鲁棒控制 [J]. 航空动力学报, 2019, 34(2): 503-512.
GAO Qiang, ZHU Yuchuan, WANG Rui, et al. Adaptive robust control of electro-hydraulic position servo system using high speed on/off valve [J]. Journal of Aerospace Power, 2019, 34(2): 503-512.
[30] 陈光荣, 王军政, 汪首坤, 等. 自适应鲁棒控制器设计新方法在电液伺服系统中的应用 [J]. 自动化学报, 2016, 42(3): 375-384.
CHEN Guangrong, WANG Junzheng, WANG Shoukun, et al. Application of a new adaptive robust controller design method to electro-hydraulic servo system [J]. Acta Automatica Sinica, 2016, 42(3): 375-384.
[31] 成旭华, 姚建勇, 乐贵高. 电液伺服系统多模型鲁棒自适应控制 [J]. 西安交通大学学报, 2018, 52(11): 156-162.
CHENG Xuhua, YAO Jianyong, LE Guigao. Multiple model robust adaptive control of electro-hydraulic servo systems [J]. Journal of Xi’an Jiaotong University, 2018, 52(11): 156-162.
[32] 李晓祥, 王安麟, 付志翼. 面向典型换挡工况重构的参数化试验载荷模型 [J]. 哈尔滨工业大学学报, 2020, 52(1): 43-49.
LI Xiaoxiang, WANG Anlin, FU Zhiyi. Parameterized test load model for typical shifting condition reconstruction [J]. Journal of Harbin Institute of Technology, 2020, 52(1): 43-49.
[33] ACU?A-BRAVO W, CANUTO E, AGOSTANI M, et al. Proportional electro-hydraulic valves: an embedded model control solution [J]. Control Engineering Practice, 2017, 62: 22-35.
[34] JIAN H C, WEI W, LI H C, et al. Optimization of a pressure control valve for high power automatic transmission considering stability [J]. Mechanical Systems and Signal Processing, 2018, 101: 182-196.
[35] SONG X Y, ZULKEFLI M A M, SUN Z X, et al. Automotive transmission clutch fill control using a customized dynamic programming method [J]. Journal of Dynamic Systems Measurement and Control, 2015, 133(5): 463-470.
[36] GAO B Z, CHEN H, ZHAO H Y, et al. A reduced-order nonlinear clutch pressure observer for automatic transmission [J]. IEEE Transactions on Control Systems Technology, 2010, 18(2): 446-453.
[37] 陈南宇, 黄俊, 周尧明, 等. 基于ESO的无人直升机轨迹鲁棒跟踪控制 [J]. 系统工程与电子技术, 2018, 40(2): 368-374.
CHEN Nanyu, HUANG Jun, ZHOU Yaoming, et al. Trajectory robust tracking control of unmanned helicopter based on extended state observer [J]. Systems Engineering and Electronics, 2018, 40(2): 368-374.
[38] 魏建华, 孙春耕, 方锦辉, 等. 复合材料成形液压机自适应鲁棒运动控制 [J]. 浙江大学学报(工学版), 2018, 52(5): 925-933.
WEI Jianhua, SUN Chungeng, FANG Jinhui, et al. Adaptive robust motion control of composite material hydraulic press [J]. Journal of Zhejiang University(Engineering Science), 2018, 52(5): 925-933.

相似文献/References:

[1]李晓祥,王安麟,李晓田.面向离合器接合过程控制的不确定性估计[J].西安交通大学学报,2020,54(07):017.[doi:10.7652/xjtuxb202007003]
 LI Xiaoxiang,WANG Anlin,LI Xiaotian.Uncertainty Estimation for Clutch Engagement Process Control[J].Journal of Xi'an Jiaotong University,2020,54(07):017.[doi:10.7652/xjtuxb202007003]

备注/Memo

备注/Memo:
收稿日期: 2019-12-16。作者简介: 李晓祥(1984—),男,博士生; 李晓田(通信作者),男,讲师。基金项目: 国家重点研发计划资助项目(2018YFC0810203)。
更新日期/Last Update: 2020-07-10