[1]顾爱博,陈刚.驾驶机器人车辆多新息动态转向力矩补偿[J].西安交通大学学报,2020,54(07):043-51.[doi:10.7652/xjtuxb202007006]
 GU Aibo,CHEN Gang.Multi-Innovation Based Dynamic Steering Torque Compensation for Driving Robot Vehicle[J].Journal of Xi'an Jiaotong University,2020,54(07):043-51.[doi:10.7652/xjtuxb202007006]
点击复制

驾驶机器人车辆多新息动态转向力矩补偿
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第07期
页码:
043-51
栏目:
出版日期:
2020-07-08

文章信息/Info

Title:
Multi-Innovation Based Dynamic Steering Torque Compensation for Driving Robot Vehicle
文章编号:
0253-987X(2020)07-0043-09
作者:
顾爱博 陈刚
南京理工大学机械工程学院, 210094, 南京
Author(s):
GU Aibo CHEN Gang
School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
关键词:
驾驶机器人车辆 动态转向力矩补偿 多新息 转向性能 离线自学习
Keywords:
driving robot vehicle dynamic steering torque compensation multi-innovation
分类号:
U461.1
DOI:
10.7652/xjtuxb202007006
文献标志码:
A
摘要:
为了减小驾驶机器人车辆长期自动驾驶过程中转向性能下降带来的影响,提出了一种基于多新息的驾驶机器人车辆动态转向力矩补偿方法。构建了车辆动力学模型和驾驶机器人车辆动力学模型; 建立了以路径曲率及车速为输入、方向盘转向角为输出的驾驶机器人车辆转向性能离线自学习模型; 建立了以方向盘角速度、角加速度及车轮转角为输入,转向机械手驱动力矩为输出的受控自回归在线辨识模型,并运用遗忘因子多新息最小二乘方法进行参数辨识,将迭代计算过程中的标量新息扩展为向量新息,提高了驾驶机器人车辆转向性能参数的辨识精度; 驾驶机器人车辆自动驾驶过程中,利用离线自学习模型和转向机械手动力学方程计算出转向电机输出力矩,加上反馈回来的驱动力矩误差,实现对驾驶机器人车辆转向力矩的在线动态补偿。仿真与试验结果对比表明:所提方法辨识的转向力矩误差在0.1 N·m以内,跟踪目标路径的横向位移偏差小于0.2 m; 所提方法有效减小了驾驶机器人车辆转向性能下降造成的影响。
Abstract:
To weaken the impact of steering performance degradation during long-term automatic driving, a dynamic steering torque compensation method for driving robot vehicle based on multi-innovation is proposed. The vehicle dynamic model and driving robot vehicle dynamic model are constructed, then an off-line self-learning model for the steering performance of driving robot vehicle is established, which takes the path curvature and the vehicle speed as input and the steering wheel angle as output. And a controlled autoregressive on-line identification model is established, which takes the angular velocity of steering wheel, angular acceleration and wheel angle as input and the driving torque of steering manipulator as output, and the parameters are identified with the forgetting factor multi-innovation least square method, the scalar innovation is extended to vector innovation in the iterative calculation to improve the identification accuracy of steering performance parameters of driving robot vehicle. In the automatic driving process of driving robot vehicle, the off-line self-learning model and steering manipulator dynamic equation are used to calculate the output torque of steering motor, and the fed-back driving torque error is added to realize the online dynamic compensation of steering torque of driving robot vehicle. A comparison between simulation and test results shows that the steering torque error identified by the proposed method is within 0.1 N·m, and the lateral displacement error of tracking the target path is less than 0.2 m.

参考文献/References:

[1] CHEN G, ZHANG W G. Digital prototyping design of electromagnetic unmanned robot applied to automotive test [J]. Robotics and Computer-Integrated Manufacturing, 2015, 32: 54-64.
[2] DUCHOANˇU F, HUBINSKY P, HANZEL J, et al. Intelligent vehicles as the robotic applications [J]. Procedia Engineering, 2012, 48: 105-114.
[3] ALT B, HERMANN E, SVARICEK F. Second order sliding modes control for rope winch based automotive driver robot [J]. International Journal of Vehicle Design, 2013, 62: 147.
[4] CHEN G, ZHANG W G. Hierarchical coordinated control method for unmanned robot applied to automotive test [J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1039-1051.
[5] GURNEY K R, ROMERO-LANKAO P, SETO K C, et al. Climate change: track urban emissions on a human scale [J]. Nature, 2015, 525(7568): 179-181.
[6] CHEN G, ZHANG W G. Design of prototype simulation system for driving performance of electromagnetic unmanned robot applied to automotive test [J]. Industrial Robot: An International Journal, 2015, 42(1): 74-82.
[7] 卢伟, 陈浩, 王玲, 等. 拖拉机驾驶机器人换挡机械手运动分析 [J]. 农业机械学报, 2016, 47(1): 37-44.
LU Wei, CHEN Hao, WANG Ling, et al. Motion analysis of tractor robot driver’s gear shift mechanical arm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 37-44.
[8] 郭应时, 蒋拯民, 白艳, 等. 无人驾驶汽车路径跟踪控制方法拟人程度研究 [J]. 中国公路学报, 2018, 31(8): 189-196.
GUO Yingshi, JIANG Zhengmin, BAI Yan, et al. Investigation of humanoid level of path tracking methods based on autonomous vehicles [J]. China Journal of Highway and Transport, 2018, 31(8): 189-196.
[9] CHOI J, YI K, SUH J, et al. Coordinated control of motor-driven power steering torque overlay and differential braking for emergency driving support [J]. IEEE Transactions on Vehicular Technology, 2014, 63(2): 566-579.
[10] 陈刚. 电磁直驱无人驾驶机器人动态特性与控制 [M]. 北京: 科学出版社, 2017: 64-69.
[11] 陈刚, 张为公, 龚宗洋, 等. 用于汽车驾驶机器人的车辆性能自学习方法 [J]. 中国机械工程, 2010, 21(4): 491-495.
CHEN Gang, ZHANG Weigong, GONG Zongyang, et al. A vehicle performance self learning method applied to robot driver [J]. China Mechanical Engineering, 2010, 21(4): 491-495.
[12] CHEN G, CHEN S B, LANGARI R, et al. Driver-behavior-based adaptive steering robust nonlinear control of unmanned driving robotic vehicle with modeling uncertainties and disturbance observer [J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 8183-8190.
[13] 熊璐, 付志强, 柏满飞, 等. 一种考虑加速度需求的车速自适应控制方法 [J]. 西安交通大学学报, 2019, 53(1): 62-69.
XIONG Lu, FU Zhiqiang, BAI Manfei, et al. A vehicle speed adaptive control method considering acceleration demand [J]. Journal of Xi’an Jiaotong University, 2019, 53(1): 62-69.
[14] DING F. Several multi-innovation identification methods [J]. Digital Signal Processing, 2010, 20(4): 1027-1039.
[15] WAN L J, DING F. Decomposition- and gradient-based iterative identification algorithms for multivariable systems using the multi-innovation theory [J]. Circuits, Systems, and Signal Processing, 2019, 38(7): 2971-2991.
[16] 索江镭, 胡志坚, 刘宇凯, 等. 基于多新息耦合最小二乘算法的电力系统状态空间辨识 [J]. 电力自动化设备, 2015, 35(7): 65-73.
SUO Jianglei, HU Zhijian, LIU Yukai, et al. Power system state space identification based on multi-innovation coupling least square algorithm [J]. Electric Power Automation Equipment, 2015, 35(7): 65-73.
[17] 卫志农, 原康康, 成乐祥, 等. 基于多新息最小二乘算法的锂电池参数辨识 [J]. 电力系统自动化, 2019, 43(15): 139-145.
WEI Zhinong, YUAN Kangkang, CHENG Lexiang, et al. Parameter identification of lithium-ion battery based on multi-innovation least squares algorithm [J]. Automation of Electric Power Systems, 2019, 43(15): 139-145.
[18] DING F, LIU P X, LIU G J. Multiinnovation least-squares identification for system modeling [J]. IEEE Transactions on Systems, Man, and Cybernetics: Part B Cybernetics, 2010, 40(3): 767-778.
[19] 尹念东. 汽车-驾驶员-环境闭环系统操纵稳定性虚拟试验技术的研究 [D]. 北京: 中国农业大学, 2001: 70-74.

备注/Memo

备注/Memo:
收稿日期: 2020-01-10。作者简介: 顾爱博(1995—),男,硕士生; 陈刚(通信作者),男,副教授。基金项目: 国家自然科学基金资助项目(51675281); 中央高校基本科研业务费专项资金资助项目(30918011101); 江苏省研究生科研与实践创新计划资助项目(SJCX19_0052)。
更新日期/Last Update: 2020-07-10