[1]胥军,万磊,冯澜,等.商用车气压制动系统压力响应模型构建与验证[J].西安交通大学学报,2020,54(07):025-33.[doi:10.7652/xjtuxb202007004]
 XU Jun,WAN Lei,FENG Lan,et al.Construction and Verification of Pressure Response Model for Commercial Vehicle Pneumatic Braking System[J].Journal of Xi'an Jiaotong University,2020,54(07):025-33.[doi:10.7652/xjtuxb202007004]
点击复制

商用车气压制动系统压力响应模型构建与验证
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第07期
页码:
025-33
栏目:
出版日期:
2020-07-08

文章信息/Info

Title:
Construction and Verification of Pressure Response Model for Commercial Vehicle Pneumatic Braking System
文章编号:
0253-987X(2020)07-0025-09
作者:
胥军 万磊 冯澜 李刚炎
武汉理工大学机电工程学院, 430070, 武汉
Author(s):
XU Jun WAN Lei FENG Lan LI Gangyan
School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
关键词:
商用车 气压制动 压力响应 动态特性 立方插值拟质点法
Keywords:
commercial vehicle pneumatic braking pressure response dynamic characteristics cubic interpolated profile method
分类号:
TH138; U463.5
DOI:
10.7652/xjtuxb202007004
文献标志码:
A
摘要:
为准确获取商用车气压制动系统的压力响应动态特性,对商用车气压制动系统压力响应模型进行了构建与验证。综合考虑制动管路及各部件间耦合关系对系统压力响应的影响,依据制动系统中各部件的工作机理及其与管路间的连接方式,建立了包括气动管路、储气罐、制动气室、继动阀等部件在内的压力响应理论模型。采用立方插值拟质点法求解气动管路的分布参数模型。在此基础上,分别建立了各关键部件的仿真模型,并将其封装添至Simulink仿真模型库中。以某型商用车的双回路气压制动系统为例,搭建整车气压制动系统的压力响应仿真模型。将仿真实验结果与基于实车的台架实验数据进行对比,结果表明,各测压点的压力均方根偏差最大值为10 kPa,相关系数为0.98。以前轴制动气室为例,比较了有无管路对压力响应的影响,结果证明了考虑管路的必要性。所构建的气压制动系统压力响应模型应可为商用车气压制动系统的性能分析、结构设计优化和制动控制开发提供依据和参考。
Abstract:
To accurately acquire the dynamic characteristics of pressure response of commercial vehicle pneumatic braking system, a pressure response model is constructed and verified. The influences of the coupling relationship between the brake pipelines and various components are considered. According to the working mechanism of various components in the braking system and their connection with the pipeline, the theoretical model of pressure response including pneumatic pipeline, air storage tank, brake air chamber, relay valve and other components is established. The distributed parameter model of the pneumatic pipeline is solved by adopting cubic interpolated profile method, thereby the simulation model of each key component is constructed, encapsulated and added to Simulink simulation model library. Taking a dual circuit pneumatic braking system in a commercial vehicle as an example, the pressure response simulation model of the whole vehicle pneumatic braking system is established. The experimental simulation results are compared with the test data from a test bench of real vehicle. It is found that the maximum root mean square deviation of each pressure measurement point is only 10 kPa, and the correlation coefficient reaches 0.98. Taking the front axle brake chamber as an example, the influences of cases with/without pipeline on pressure response are compared, and the necessity of considering pipeline is verified. This pressure response model of the pneumatic braking system provides a reference for performance analysis, structural design and optimization of pneumatic braking system of commercial vehicle, as well as for braking control development.

参考文献/References:

[1] 丁伟. 让汽车连接世界 [J]. 中国公共安全, 2017(10): 183-188.
DING Wei. Let cars connect the world [J]. China Public Security, 2017(10): 183-188.
[2] 何起广. 基于AMESim的气压制动系统建模与优化设计 [D]. 武汉: 华中科技大学, 2017: 1.
[3] WANG Jianqiang, YANG Bo, LI Shengbo, et al. Pneumatic electronic braking assistance system using high-speed valves [C]∥Proceedings of the 2010 IEEE International Conference on Vehicular Electronics and Safety. Piscataway, NJ, USA: 2010, IEEE: 59-64.
[4] 陆艺, 徐博文, 施岩, 等. 客车制动系统动态模型研究及试验验证 [J]. 液压与气动, 2015(4): 29-34.
LU Yi, XU Bowen, SHI Yan, et al. Dynamic model study and test verification of bus braking system [J]. Chinese Hydraulics & Pneumatics, 2015(4): 29-34.
[5] 陆艺, 朱蔷, 夏文杰, 等. 基于解析模型的气制动系统泄漏故障诊断研究 [J]. 计量学报, 2016, 37(4): 402-405.
LU Yi, ZHU Qiang, XIA Wenjie, et al. Research on leakage fault diagnosis of air braking system based on analytical model [J]. Journal of Metrology, 2016, 37(4): 402-405.
[6] 亓旺, 李刚炎, 卢谦, 等. 客车制动气室气体入口直径对压力特性影响的研究 [J]. 液压气动与密封, 2016, 36(6): 21-25.
QI Wang, LI Gangyan, LU Qian, et al. Influence of gas inlet diameter of brake chamber on pressure characteristics of passenger car [J]. Chinese Hydraulics Pneumatics & Seals, 2016, 36(6): 21-25.
[7] CAZZOLA G J, ARIAS R E, MIRASSOU H M, et al. Influence of the relay valve on pneumatic brake systems [J]. DYNA, 2017, 92(6): 661-666.
[8] SUBRAMANIAN S C, DARBHA S, RAJAGOPAL K R, et al. Modeling the pneumatic subsystem of an s-cam air brake system [J]. ASME Journal of Dynamic Systems Measurement and Control, 2004, 126(1): 36-46.
[9] HE L, WANG X, ZHANG Y, et al. Modeling and simulation vehicle air brake system [C]∥Proceedings of the 8th International Modelica Conference. Link?ping, Sweden: Link?ping University Electronic Press, 2011: 430-435.
[10] 华健. 面向工程的气动管路压力响应时间的计算方法研究 [D]. 武汉: 武汉理工大学, 2018: 13-16.
[11] ZHE W, XIAOJUN Z, CHENLONG Y, et al. An experimental study on hysteresis characteristics of a pneumatic braking system for a multi-axle heavy vehicle in emergency braking situations [J]. Applied Sciences, 2017, 7(8): 799.
[12] 李建藩. 气压传动系统动力学 [M]. 广州: 华南理工大学出版社, 1991: 4-5.
[13] 马恩. 制动气室有效承压面积的探讨 [J]. 机械设计与制造, 2011(12): 209-211.
MA En. Discussion on the effective bearing area of brake air chamber [J]. Mechanical Design and Manufacturing, 2011(12): 209-211.
[14] 方桂花, 毛路遥, 魏燕燕, 等. 基于AMESim的继动阀动态特性研究 [J]. 机械设计与制造, 2019(7): 57-60.
FANG Guihua, MAO Luyao, WEI Yanyan, et al. Study on dynamic characteristics of relay valves based on AMESim [J]. Mechanical Design and Manufacturing, 2019(7): 57-60.
[15] 赵西增, 刘必劲, 梁书秀, 等. 紧致插值曲线CIP方法及其应用 [J]. 船舶力学, 2016, 20(4): 393-402.
ZHAO Xizeng, LIU Bijin, LIANG Shuxiu, et al. CIP method for compact interpolation curve and its application [J]. Ship Mechanics, 2016, 20(4): 393-402.
[16] YANG F, LI G, HUA J, et al. A new method for analysing the pressure response delay in a pneumatic brake system caused by the influence of transmission pipes [J]. Applied Sciences, 2017, 7(9): 941.
[17] 辜志强, 华健, 杨凡, 等. 基于立方插值拟质点法(CIP)的气动控制管路压力响应时间研究 [J]. 液压与气动, 2018(4): 37-42.
GU Zhiqiang, HUA Jian, YANG Fan, et al. Pressure response time of pneumatic control pipeline based on cubic interpolation(CIP)[J]. Chinese Hydraulics & Pneumatics, 2018(4): 37-42.
[18] 陈倩. 商用车气压制动系统动态特性仿真研究 [D]. 长春: 吉林大学, 2015: 52-53.

备注/Memo

备注/Memo:
收稿日期: 2019-12-04。 作者简介: 胥军(1977—),男,副教授。 基金项目: 中国博士后科学基金资助项目(2018M642937)。
更新日期/Last Update: 2020-07-10