[1]王彬文,董登科,陈莉,等.大型水陆两栖飞机起落架强度试验技术[J].西安交通大学学报,2020,54(07):009-16+157.[doi:10.7652/xjtuxb202007002]
 WANG Binwen,DONG Dengke,CHEN Li,et al.Strength Test Technique for Large Amphibious Aircraft Landing Gear[J].Journal of Xi'an Jiaotong University,2020,54(07):009-16+157.[doi:10.7652/xjtuxb202007002]
点击复制

大型水陆两栖飞机起落架强度试验技术
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第07期
页码:
009-16+157
栏目:
出版日期:
2020-07-08

文章信息/Info

Title:
Strength Test Technique for Large Amphibious Aircraft Landing Gear
文章编号:
0253-987X(2020)07-0009-08
作者:
王彬文 董登科 陈莉 谢宇航
中国飞机强度研究所全尺寸飞机结构静力/疲劳航空科技重点实验室, 710065, 西安
Author(s):
WANG Binwen DONG Dengke CHEN Li XIE Yuhang
Full Scale Aircraft Structure Static/Fatigue Aeronautic Science and Technology Key Laboratory, Aircraft Strength Research Institute of China, Xi’an 710065, China
关键词:
水陆两栖飞机 高支柱 超静定 起落架 静强度试验
Keywords:
large amphibious aircraft high pillar statically indeterminate structure landing gear static strength test
分类号:
V216.1
DOI:
10.7652/xjtuxb202007002
文献标志码:
A
摘要:
针对大型水陆两栖飞机起落架的超静定连接及高支柱结构所带来的试验问题,基于刚度等效理论采用数值仿真方法分别对起落架与机身连接和与试验装置连接模型进行分析,通过调整试验装置结构形式、尺寸及厚度等,实现起落架装置连接模型对机身连接模型在变形主方向位移的模拟; 基于数值仿真的力学边界条件模拟,计算主起落架轮轴中心点在最大载荷时的位移,预先调整加载点安装位置以保证最大载荷时的加载精度。试验结果表明,在机尾下沉着陆最大回弹载荷内外轮分配比例为6:4的工况下,轮轴中心点主变形方向的位移基本相同,两种连接方式各向载荷最大误差在7%左右。研制了集模块化、多功能和通用性于一体的机身刚度模拟自平衡试验装置,满足了主起落架8种工况的静强度试验需求,可为其他型号起落架试验提供参考。
Abstract:
To solve the test problems caused by the statically fixed connection and high pillar structure of large amphibious aircraft landing gear, based on the stiffness equivalence theory, two models of landing gear connected with fuselage and connected with test device were analyzed by numerical simulation method. By optimizing the structural form, size and thickness of the test device, the displacement of landing gear-device connection model in the main direction of deformation was simulated according to that of the landing gear-fuselage connection model. Based on the numerical simulation of mechanical boundary condition, the displacement at the center point of the main landing gear shaft under the maximum load was calculated, and the installation position of the loading point was adjusted in advance to ensure the loading accuracy under the maximum load. The results showed that under the maximum resilience load condition(the load ratio of inner wheel to outer wheel is 6:4)for the tail subsidence landing, the displacement of the wheel shaft center point in the main deformation direction was basically the same, and the maximum error of the two connection modes in each direction was about 7%. On this basis, a self-balancing experimental device for fuselage stiffness simulation was developed, which integrates modularization, multi-function and universality, and can meet the static strength test requirements of the main landing gear under eight working conditions. The research results can be used for reference in the tests of other types of landing gears.

参考文献/References:

[1] 黄领才, 雍明培. 水陆两栖飞机的关键技术和产业应用前景 [J]. 航空学报, 2019, 40(1): 522708.
HUANG Lingcai, YONG Mingpei. Key technologies and industrial application prospects of amphibian aircraft [J]. Acta Aeronautica et Astronautica Sincia, 2019, 40(1): 522708.
[2] NIE H, WEI X H. Key technologies for landing gear of large civil aircrafts [J]. Journal of Nanjing University of Aeronautics and Astronautics, 2008, 40(4): 427-432.
[3] 中国民用航空局. 中国民用航空规章(第25部)运输类飞机适航标准: CCAR-25-R4 [S]. 北京: 中国民用航空局, 2011: 29-30.
[4] 国防科学技术工业委员会. 中华人民共和国航空行业标准飞机结构静强度试验通用要求: HB7713—2002 [S]. 北京: 国防科学技术工业委员会, 2002: 1-7.
[5] 孙侠生. 民用飞机结构强度刚度设计与验证指南 [M]. 北京: 航空工业出版社, 2012: 81-90.
[6] 强宝平. 全尺寸飞机结构试验技术 [J]. 航空科学技术, 2012(6): 10-13.
QIANG Baoping. Evaluation of full scale aircraft structure strength test technology [J]. Aeronautical Science and Technology, 2012(6): 10-13.
[7] DE FARIAS C R, AZEVEDO E, HIPPERT J. Fracture of an aircraft’s landing gear [J]. Engineering Failure Analysis, 2002, 9: 265-275.
[8] CHESTER D H. Aircraft landing impact parametric study with emphasis on nose gear landing conditions [J]. Journal of Aircraft, 2002, 39(3): 394-403.
[9] 陈博, 陆慧莲. 某型民用运输机主起落架连接区结构静力试验 [J]. 民用飞机设计与研究, 2013(3): 21-23.
CHEN Bo, LU Huilian. Static strength test of the main landing gear [J]. Civil Aircraft Design and Research, 2013(3), 21-23.
[10] 贺谦. 基于全尺寸飞机的前起落架最大回弹载荷静力试验研究 [J]. 强度与环境, 2012, 39(5): 34-37.
HE Qian. Static test on the maximal rebound load of frontal undercarriage based on full scale aircraft [J]. Structure and Environment Engineering, 2012, 39(5): 34-37.
[11] 刘权良, 尹伟, 夏峰. 飞机结构静强度试验支持方案的确定 [J]. 航空科学技术, 2012(5): 32-35.
LIU Quanliang, YIN Wei, XIA Feng. The determination of support scheme for aircraft static strength verifications test [J]. Aeronautical Science and Technology, 2012(5): 32-35.
[12] 夏峰, 穆家琛. 全机静力试验多轮多支柱起落架支持与加载技术 [J]. 科学技术与工程, 2018, 18(30): 238-244.
XIA Feng, MU Jiachen. The support and loading technology of landing gear with multi-wheels and multi-struts for full-scale aircraft static test [J]. Science Technology Engineering, 2018, 18(30): 238-244.
[13] 朱锦杰. 飞机起落架地面疲劳试验系统设计 [D]. 南京: 南京航空航天大学, 2009: 4-7.
[14] 樊丽娟. 飞机起落架静强度试验技术 [J]. 科技创新与应用, 2013(3): 96.
FAN Lijuan. Static strength test technology of landing gear for aircraft [J]. Technology Innovation and Application, 2013(3): 96.
[15] 詹家礼. 大型水陆两栖飞机起落架方案设计及相关技术研究 [D]. 南京: 南京航空航天大学, 2010: 7-21.
[16] 何月洲, 赵洪伟. 水陆两栖飞机静强度试验悬空支持技术研究及应用 [J]. 工程与试验, 2018, 58(4): 98-105.
HE Yuezhou, ZHAO Hongwei. Study on suspended support technology in static strength test of full-scale amphibian aircraft and its application [J]. Engineering and Test, 2018, 58(4): 98-105.
[17] 詹家礼, 魏小辉, 米滨, 等. 大型水陆两栖飞机起落架总体布局 [J]. 江苏航空, 2010(4): 2-5.
ZHAN Jiali, WEI Xiaohui, MI Bin, et al. Overall layout landing gear of large amphibious aircraft [J]. Jiangsu Aviation, 2010(4): 2-5.
[18] 郑光. 某飞机机翼吊挂连接接头破坏试验设计 [D]. 南京: 南京航空航天大学, 2013: 12-18.
[19] 李卫平, 谭伟, 薛彩军, 等. 民用飞机发动机吊挂部段静力试验与静强度分析 [J]. 南京航空航天大学学报, 2011, 43(6): 732-737.
LI Weiping, TAN Wei, XUE Caijun, et al. Static test and computational analysis for pylon of airliner engine [J]. Journal of Nanjing University of Aeronautics and Astronautics, 2017, 43(6): 732-737.
[20] 唐维. 民用飞机发动机吊挂连接件强度试验与分析 [D]. 南京: 南京航空航天大学, 2014: 26-37.

备注/Memo

备注/Memo:
收稿日期: 2019-10-21。作者简介: 王彬文(1974—),男,博士,研究员。基金项目: 国家自然科学基金资助项目(51601175)。
更新日期/Last Update: 2020-07-10