[1]孙平,丁雨姗.全方向康复步行训练机器人具有死区补偿的反步有限时间控制[J].西安交通大学学报,2020,54(07):001-8+74.[doi:10.7652/xjtuxb202007001]
 SUN Ping,DING Yushan.Backstepping Finite-Time Control with Dead-Zone Compensation for Omnidirectional Rehabilitative Training Walker[J].Journal of Xi'an Jiaotong University,2020,54(07):001-8+74.[doi:10.7652/xjtuxb202007001]
点击复制

全方向康复步行训练机器人具有死区补偿的反步有限时间控制
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第07期
页码:
001-8+74
栏目:
出版日期:
2020-07-08

文章信息/Info

Title:
Backstepping Finite-Time Control with Dead-Zone Compensation for Omnidirectional Rehabilitative Training Walker
文章编号:
0253-987X(2020)07-0001-08
作者:
孙平 丁雨姗
沈阳工业大学信息科学与工程学院, 110870, 沈阳
Author(s):
SUN Ping DING Yushan
School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
关键词:
全方向康复步行训练机器人 死区补偿 反步有限时间控制 跟踪精度
Keywords:
omnidirectional rehabilitative training walker dead-zone compensation backstepping finite-time control tracking accuracy
分类号:
TP13
DOI:
10.7652/xjtuxb202007001
文献标志码:
A
摘要:
为了解决死区影响全方向康复步行训练机器人系统的跟踪精度问题,提出了一种具有死区补偿的反步有限时间控制方法。考虑系统的未知死区,利用自适应方法估计死区宽度,获得死区信息并对其进行补偿,从而有效抑制了死区对系统跟踪性能的影响,避免了系统发生极限环振荡。为了防止机器人初始运动阶段产生较大的跟踪误差而影响康复者的安全,提出了反步有限时间控制方法,确保跟踪误差系统在有限时间内达到稳定。基于Lyapunov有限时间稳定理论,给出了误差系统的稳定条件及稳定时间。与速度和加速度同时约束的控制方法进行了仿真和实验对比,结果表明:所提的控制器设计方法可使系统的跟踪误差在大约8 s后趋向于0,机器人在有限时间内实现了对指定轨迹的稳定跟踪,解决了速度和加速度同时约束的控制方法不能使机器人稳定地跟踪训练轨迹、无法解决系统死区的问题; 所提的有限时间控制方法能使系统误差快速收敛,有效解决了死区对系统性能的影响,提高了机器人的跟踪精度和安全性。
Abstract:
To solve the problem of the dead zone characteristics affecting the tracking accuracy of the system for rehabilitation training walker, a backstepping finite-time control method with dead zone compensation is correspondingly proposed. Taking the unknown dead zone of the system into account, the width of the dead zone is estimated with the adaptive method to obtain information in the dead zone and compensate the dead zone, thus effectively suppressing the influence of the dead zone on the tracking performance of the system and avoiding the limit cycle oscillation of the system. In addition, to prevent the large tracking error during the initial motion of the walker endangering the safety of the rehabilitee, a backstepping finite-time control method is proposed to ensure that the tracking error remains stable within a limited period. Following Lyapunov finite-time stability theory, the stability conditions and stability time of the error system are obtained. For the control method of simultaneous constraint of speed and acceleration, simulation and experiment were comparatively performed. The results show that the tracking error of the system with the proposed controller tends to zero after about 8 s, and the walker completes stable tracking for the specified trajectory within a limited time. However, in the control method where speed and acceleration are constrained simultaneously, the walker cannot stably track the training trajectory, and the dead zone difficulty of the system remains unsolved. With this proposed finite-time control method, the system error converges quickly, the effect of the dead zone characteristics on the system performance is effectively eliminated, and the tracking performance and safety of the rehabilitation training walker are improved.

参考文献/References:

[1] MENG W, LIU Q, ZHOU Z D, et al. Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation [J]. Mechatronics, 2015, 31: 132-145.
[2] FATEH M M, KHOSHDEL V. Voltage-based adaptive impedance force control for a lower-limb rehabilitation robot [J]. Advanced Robotics, 2015, 29(15): 961-971.
[3] SANZMERODIO D, CESTARI M, AREVALO J C, et al. Generation and control of adaptive gaits in lower-limb exoskeletons for motion assistance [J]. Advanced Robotics, 2014, 28(5): 329-338.
[4] SUN P, WANG S Y. Redundant input safety tracking for omnidirectional rehabilitative training walker with control constraints [J]. Asian Journal of Control, 2017, 19(1): 116-130.
[5] YUN D, KHAN A M, YAN R J, et al. Handling subject arm uncertainties for upper limb rehabilitation robot using robust sliding mode control [J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(3): 355-362.
[6] WEN Z, QIAN J W, SHEN L Y, et al. Experimental research on trajectory control of walking rehabilitation training robot [J]. Applied Mechanics and Materials, 2012, 187: 177-185.
[7] HU C X, YAO B, WANG Q F. Adaptive robust precision motion control of systems with unknown input dead-zones: a case study with comparative experiments [J]. IEEE Transactions on Industrial Electronics, 2011, 58(6): 2454-2464.
[8] 杨航, 刘凌, 倪骏康, 等. 双关节刚性机器人自适应BP神经网络算法 [J]. 西安交通大学学报, 2018, 52(1): 129-135, 164.
YANG Hang, LIU Ling, NI Junkang, et al. An adaptive BP neural network algorithm for 2-joint rigid robots [J]. Journal of Xi’an Jiaotong University, 2018, 52(1): 129-135, 164.
[9] IBRIR S, XIE W F, SU C Y. Adaptive tracking of nonlinear systems with non-symmetric dead-zone input [J]. Automatica, 2007, 43(3): 522-530.
[10] ZUO Z Y, JU X L, DING Z T. Control of gear transmission servo systems with asymmetric deadzone nonlinearity [J]. IEEE Transactions on Control Systems Technology, 2016, 24(4): 1472-1479.
[11] SHI Z G, ZUO Z Y. Backstepping control for gear transmission servo systems with backlash nonlinearity [J]. IEEE Transactions on Automation Science and Engineering, 2015, 12(2): 752-757.
[12] YU J P, ZHAO L, YU H S, et al. Fuzzy finite-time command filtered control of nonlinear systems with input saturation [J]. IEEE Transactions on Cybernetics, 2018, 48(8): 2378-2387.
[13] YU J P, SHI P, ZHAO L. Finite-time command filtered backstepping control for a class of nonlinear systems [J]. Automatica, 2018, 92: 173-180.
[14] LIU H T, ZHANG T. Adaptive neural network finite-time control for uncertain robotic manipulators [J]. Journal of Intelligent & Robotic Systems, 2014, 75(3): 363-377.
[15] NA J, MAHYUDDIN M N, HERRMANN G, et al. Robust adaptive finite time parameter estimation and control for robotic systems [J]. International Journal of Robust and Nonlinear Control, 2015, 25(16): 3045 -3071.
[16] VAN M, GE S S, REN H L. Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control [J]. IEEE Transactions on Cybernetics, 2017, 47(7): 1681-1693.
[17] CHANG H B, SUN P, WANG S Y. Output tracking control for an omnidirectional rehabilitative training walker with incomplete measurements and random parameters [J]. International Journal of Systems Science, 2017, 48(12): 2509-2521.
[18] SUN P, WANG S Y, KARIMI H R. Robust redundant input reliable tracking control for omnidirectional rehabilitative training walker [J]. Mathematical Problems in Engineering, 2014, 2014: 1-10.
[19] PARK S H, HAN S I. Robust-tracking control for robot manipulator with deadzone and friction using backstepping and RFNN controller [J]. IET Control Theory and Applications, 2011, 5(12): 1397-1417.
[20] BHAT S P, BERNSTEIN D S. Finite-time stability of continuous autonomous systems [J]. SIAM Journal on Control and Optimization, 2000, 38(3): 751-766.
[21] 孙平. 不确定康复训练机器人速度与加速度同时约束的跟踪控制 [J]. 北京理工大学学报, 2018, 38(10): 1067-1072.
SUN Ping. Tracking control for uncertain rehabilitative training walker with velocity and acceleration simultaneous constraints [J]. Transactions of Beijing Institute of Technology, 2018, 38(10): 1067-1072.

备注/Memo

备注/Memo:
收稿日期: 2019-12-11。 作者简介: 孙平(1974—),女,教授,博士生导师。 基金项目: 国家重点研发计划资助项目(2016 YFD0700104); 辽宁省自然科学基金资助项目(2019-ZD-0203); 辽宁省自然科学基础研究资助项目(LJGD2019017)。
更新日期/Last Update: 2020-07-10