[1]张辰,丁万成,张景峰,等.用第一性原理研究乙醇胺在Ni(111)和Cu(111)表面的吸附机理[J].西安交通大学学报,2020,54(06):168-175.[doi:10.7652/xjtuxb202006022]
 ZHANG Chen,DING Wancheng,ZHANG Jingfeng,et al.Investigation into Adsorption Mechanism of Ethanolamine on Ni(111)and Cu(111)Surfaces Using the First Principles[J].Journal of Xi'an Jiaotong University,2020,54(06):168-175.[doi:10.7652/xjtuxb202006022]
点击复制

用第一性原理研究乙醇胺在Ni(111)和Cu(111)表面的吸附机理
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第06期
页码:
168-175
栏目:
出版日期:
2020-06-10

文章信息/Info

Title:
Investigation into Adsorption Mechanism of Ethanolamine on Ni(111)and Cu(111)Surfaces Using the First Principles
文章编号:
0253-987X(2020)06-0168-08
作者:
张辰 丁万成 张景峰 余云松 张早校
西安交通大学化学工程与技术学院, 710049, 西安
Author(s):
ZHANG Chen DING Wancheng ZHANG Jingfeng YU Yunsong ZHANG Zaoxiao
School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
关键词:
第一性原理 乙醇胺 Ni(111) Cu(111) 表面吸附
Keywords:
first principles ethanolamine Ni(111) Cu(111) surface adsorption
分类号:
TQ426
DOI:
10.7652/xjtuxb202006022
文献标志码:
A
摘要:
为了探究乙醇胺催化脱氢法中乙醇胺与催化剂之间的作用机理,依据密度泛函理论(DFT),研究了乙醇胺在Ni(111)和Cu(111)表面上各高对称位的吸附机制,优化了乙醇胺在吸附位点Top、Bridge、Hcp和Fcc的吸附结构,并对最稳定吸附构型的吸附能、电荷转移和态密度进行了对比分析。结果表明:乙醇胺以氨基上的氮原子接近Ni(111)和Cu(111)表面Top位时的吸附能最小,分别为-1.31 eV和-1.04 eV,此时乙醇胺向金属表面的电荷转移量分别为0.08e和0.06e(e为1个电子的电荷量),且吸附后分子内部键长基本不变,说明乙醇胺在Ni(111)和Cu(111)表面的吸附均属于物理吸附,电子态密度分析的结果与当前结果一致; 乙醇胺与金属Ni之间的相互作用更强。这些结果为深入了解乙醇胺在Ni(111)和Cu(111)表面的反应机理提供了理论基础。
Abstract:
To explore the mechanism of the interaction between ethanolamine and catalyst in the catalytic dehydrogenation of ethanolamine, the adsorption of ethanolamine on Ni(111)and Cu(111)surfaces with high symmetry sites is investigated by using density functional theory(DFT). The adsorption structure of ethanolamine is optimized at the Top, Bridge, Hcp and Fcc sites, and the adsorption energy, charge transfer and state density of the most stable adsorption configuration are analyzed comparatively. The results show that the adsorption energy of ethanolamine gets the smallest as the nitrogen atom of the amino group approaching the surface Top site of Ni(111)and Cu(111), and is determined as -1.31 eV and -1.04 eV respectively. At this point, the charge transfer amount of ethanolamine to the metal surface is determined as 0.08e and 0.06e respectively. The internal bond length of ethanolamine is basically unchanged after adsorption, which indicates that the adsorption of ethanolamine on the surface of Ni(111)and Cu(111)belongs to physical adsorption. The results of electron state density analysis coincide with the above mentioned ones, which verifies the stronger interaction between ethanolamine and Ni.

参考文献/References:

[1] MCWILLIAMS L E, VALLEY N A, VINCENT N M, et al. Interfacial insights into a carbon capture system: CO2 uptake to an aqueous monoethanolamine surface [J]. The Journal of Physical Chemistry: A, 2017, 121(41): 7956-7967.
[2] MUMFORD K A, WU Y, SMITH K H, et al. Review of solvent based carbon-dioxide capture technologies [J]. Frontiers of Chemical Science and Engineering, 2015, 9(2): 125-141.
[3] VEGA F, SANNA A, NAVARRETE B, et al. Degradation of amine-based solvents in CO2 capture process by chemical absorption [J]. Greenhouse Gases: Science and Technology, 2014, 4(6): 707-733.
[4] REYNOLDS A J, VERHEYEN T V, ADELOJU S B, et al. Monoethanolamine degradation during pilot-scale post-combustion capture of CO2 from a Brown coal-fired power station [J]. Energy & Fuels, 2015, 29(11): 7441-7455.
[5] ARONU U E, SVENDSEN H F, HOFF K A. Investigation of amine amino acid salts for carbon dioxide absorption [J]. International Journal of Greenhouse Gas Control, 2010, 4(5): 771-775.
[6] KUMAR P S, HOGENDOORN J A, FERON P H M, et al. Equilibrium solubility of CO2 in aqueous potassium taurate solutions: part 1 Crystallization in carbon dioxide loaded aqueous salt solutions of amino acids [J]. Industrial & Engineering Chemistry Research, 2003, 42(12): 2832-2840.
[7] GELOWITZ D. Recent progress and new development of post-combustion carbon-capture technology using reactive solvents [J]. Carbon Management, 2011, 2(3): 261-263.
[8] 杨运泉, 段正康, 刘文英, 等. 一乙醇胺催化脱氢合成氨基乙酸钠反应动力学研究 [J]. 化学反应工程与工艺, 2001, 17(3): 210-215.
YANG Yunquan, DUAN Zhengkang, LIU Wenying, et al. Kinetic study on catalytic dehydrogenation of monoethanolamine to sodium glycine [J]. Chemical Reaction Engineering and Technology, 2001, 17(3): 210-215.
[9] 蔡振云, 卢祖国, 白传伟. 改性Raney Cu催化一乙醇胺脱氢合成甘氨酸 [J]. 精细化工, 2003, 20(3): 187-189.
CAI Zhenyun, LU Zuguo, BAI Chuanwei. Modified raney Cu catalyzed dehydrogenation of monoethanolamine to glycine [J]. Fine Chemicals, 2003, 20(3): 187-189.
[10] 刘玉娟, 金杏妹. 用于二乙醇胺脱氢反应的铜锰系催化剂制备条件的研究 [J]. 工业催化, 2008, 16(10): 165-168.
LIU Yujuan, JIN Xingmei. Study on preparation conditions of copper-manganese catalysts for dehydrogenation of diethanolamine [J]. Industrial Catalysis, 2008, 16(10): 165-168.
[11] 伍君, 段正康, 李文娟, 等. 二乙醇胺脱氢制备亚氨基二乙酸Cu—MoO3-ZrO2催化剂的研究 [J]. 分子催化, 2013, 27(6): 515-521.
WU Jun, DUAN Zhengkang, LI Wenjuan, et al. Preparation of iminodiacetic acid Cu-MoO3-ZrO2 catalyst by dehydrogenation of diethanolamine [J]. Molecular Catalysis, 2013, 27(6): 515-521.
[12] SAELEE T, NAMUANGRUK S, KUNGWAN N, et al. Theoretical insight into catalytic propane dehydrogenation on Ni(111)[J]. The Journal of Physical Chemistry: C, 2018, 122(26): 14678-14690.
[13] CHEN Hao, HE Shan, XU Ming, et al. Promoted synergic catalysis between metal Ni and acid-base sites toward oxidant-free dehydrogenation of alcohols [J]. ACS Catalysis, 2017, 7(4): 2735-2743.
[14] KIM C, SUH B L, YUN H, et al. Surface plasmon aided ethanol dehydrogenation using Ag-Ni binary nanoparticles [J]. ACS Catalysis, 2017, 7(4): 2294-2302.
[15] LIN Y S, WANG C Y, YANG C M, et al. Surface chemistry of monoethanolamine on oxygen-precovered Cu(100)[J]. Journal of Physical Chemistry: C, 2008, 112(22): 8304-8310.
[16] LIN Y S, LIN J S, WANG C Y, et al. Adsorption and decomposition of monoethanolamine on Cu(100)[J]. Journal of Physical Chemistry: C, 2009, 113(10): 4147-4154.
[17] MüLLER K, LU D, SENANAYAKE S D, et al. Monoethanolamine adsorption on TiO2(110): bonding, structure and implications for use as a model solid supported CO2 capture material [J]. Journal of Physical Chemistry: C, 2014, 118(3): 1576-1586.
[18] GOURON A, KITTEL J, BRUIN T D, et al. Density functional theory study of monoethanolamine adsorption on hydroxylated Cr2O3 surfaces [J]. Journal of Physical Chemistry: C, 2015, 119(40): 22889-22898.
[19] KRESSE G, HAFNER J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium [J]. Physical Review: B, 1994, 49(20): 14251.
[20] KRESSE G, FURTHMüLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Computational Materials Science, 1996, 6(1): 15-50.
[21] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review: B, 1999, 59(3): 1758-1775.
[22] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865-3868.
[23] PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients [J]. Reviews of Modern Physics, 1992, 64(4): 1045-1097.
[24] METHFESSEL M, PAXTON A T. High-precision sampling for Brillouin-zone integration in metals [J]. Physical Review: B, 1989, 40(6): 3616-3621.
[25] GRIMME S, ANTONY J, EHRLICH S. A consistent and accurate ab initio parametrization of density functional dispersion correction(DFT-D)for the 94 elements H-Pu [J]. The Journal of Chemical Physics, 2010, 132(15): 154104.
[26] CHRISTMANN K, SCHOBER O, ERTL G, et al. Adsorption of hydrogen on nickel single crystal surfaces [J]. The Journal of Chemical Physics, 1974, 60: 4528-4540.
[27] SMART J S. Effective field theories of magnetism [J]. Physics Today, 1966, 19(8): 77-78.
[28] KADODWALA M F, DAVIS A A, SCRAGG G, et al. Structural determination of the Cu(111)-(31/2×31/2)R30°-ClBr surface using the normal incidence X-ray standing wave method [J]. Surface Science, 1995, 324(2): 122-132.
[29] VOROBYOV I, YAPPERT M C, DUPRé D B. Hydrogen bonding in monomers and dimers of 2-aminoethanol [J]. Journal of Physical Chemistry: A, 2002, 106(4): 668-679.
[30] HAMMER B, N?RSKOV J K. Electronic factors determining the reactivity of metal surfaces [J]. Surface Science, 1995, 343(3): 211-220.
[31] LUO Q, FENG G, BELLER M, et al. Formic acid dehydrogenation on Ni(111)and comparison with Pd(111)and Pt(111)[J]. The Journal of Physical Chemistry: C, 2012, 116: 4149-4156,
[32] MENDEZ M A, OED W, FRICKE A, et al. LEED structure analysis of p(31/2×31/2)R30°-O/Ni(111)[J]. Surface Science, 1991, 253(1): 99-106.
[33] LINDSAY R, THEOBALD A, GIE?EL T, et al. The structure of NO on Ni(111)at low coverage [J]. Surface Science, 1998, 405(2): L566-L572.
[34] MA Liangcai, ZHANG Jianmin, XU Kewei. Structural and electronic properties of atomic oxygen adsorption on Cu(111)surface: a first-principles investigation [J]. Science China(Physics, Mechanics and Astronomy), 2013(3): 573-580.
[35] PADAMA A A B, KISHI H, AREVALO R L, et al. NO dissociation on Cu(111)and Cu 2O(111)surfaces: a density functional theory based study [J]. Journal of Physics: B, 2012, 24(17): 175005.

备注/Memo

备注/Memo:
收稿日期: 2019-10-01。作者简介: 张辰(1996—),男,硕士生; 余云松(通信作者),男,副教授,博士生导师。基金项目: 国家自然科学基金资助项目(51506165,21736008)。
更新日期/Last Update: 2020-06-10