[1]方健珉,王静,孙西峰,等.回热器对电动汽车跨临界CO2制冷系统影响的实验研究[J].西安交通大学学报,2020,54(06):155-160.[doi:10.7652/xjtuxb202006020]
 FANG Jianmin,WANG Jing,SUN Xifeng,et al.Effect of Internal Heat Exchanger on Transcritical CO2 Refrigeration System of Electric Vehicle[J].Journal of Xi'an Jiaotong University,2020,54(06):155-160.[doi:10.7652/xjtuxb202006020]
点击复制

回热器对电动汽车跨临界CO2制冷系统影响的实验研究
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第06期
页码:
155-160
栏目:
出版日期:
2020-06-10

文章信息/Info

Title:
Effect of Internal Heat Exchanger on Transcritical CO2 Refrigeration System of Electric Vehicle
文章编号:
0253-987X(2020)06-0155-06
作者:
方健珉1 王静1 孙西峰12 殷翔1 曹锋1
1.西安交通大学能源与动力工程学院, 710049, 西安; 2.东风汽车公司技术中心, 430000, 武汉
Author(s):
FANG Jianmin1 WANG Jing1 SUN Xifeng12 YIN Xiang1 CAO Feng1
1. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China; 2. Dongfeng Motor Corporation Technical Center, Wuhan 430000, China
关键词:
回热器 二氧化碳 电动汽车空调
Keywords:
internal heat exchanger CO2 electric vehicle air conditioning
分类号:
TB657
DOI:
10.7652/xjtuxb202006020
文献标志码:
A
摘要:
针对跨临界CO2汽车空调系统制冷性能较差的问题,分析了回热器大小对系统性能和运行参数的影响,在汽车空调测试环境实验室中搭建了一个可变回热量的跨临界CO2制冷系统实验台,在35、38和41 ℃环境温度下,保持压缩机转速为3 500 r/min,通过旁通阀调节回热量,测量了不同排气压力下全回风系统的稳态性能,分析了回热量对系统制冷量和能效比的提升作用,以及对压缩机运行参数的影响。结果表明:排气压力为10 MPa时,35、38和41 ℃下,使用回热器后系统的最大能效比分别提高了14.2%、23.3%和33.2%,制冷量也增加了14.3%~33.3%; 使用回热器可以改善换热器压力损失,但同时会引起排气温度升高; 相同温度下,系统最大回热度一般随环境温度升高而减小; 回热器的使用可以有效提高系统性能,但也会引起压缩机压比增大和排气温度的上升。在跨临界CO2制冷循环的回热器大小设计时,需要兼顾性能和安全。
Abstract:
To solve the problem of the bad cooling performance, an experimental setup of the transcritical CO2 refrigeration system with an adjustable heat exchanger is set up in a mobile air conditioning calorimeter facility to investigate the effects of the internal heat exchanger on the performance and operation parameters of transcritical CO2 air conditioning system used in electrical vehicles. The experiments are conducted at the ambient temperature of 35, 38 and 41 ℃ with the compressor speed at 3 500 r/min, and the steady results are measured under variable discharge pressure and heat flux of the internal heat exchanger. The effects of the internal heat exchanger on the improvement of cooling capacity and COP of the system and the influence on the operation parameters of the compressor are analyzed. The results show that when the exhaust pressure is 10 MPa, the COP of the system increases by 14.2%, 23.3% and 33.2% respectively after using the internal heat exchanger under the three ambient temperatures, and the cooling capacity increases by 14.3% to 33.3%. Meanwhile, the pressure reduction in the heat loss was reduced. But using an internal heat exchanger would result in the increase of discharge temperature. The higher the ambient temperature is, the smaller an internal heat exchanger allowed is when operating at same discharge pressure. The use of the internal heat exchanger can effectively improve the system performance, but it will also cause the increase of the compressor pressure ratio and the rise of the discharge temperature. So, the performance enhancement and the security must be both considered in the design of the size of the internal heat exchanger for a transcritical CO2 refrigeration cycle.

参考文献/References:

[1] 张文嵘, 刘丽娜, 钱程, 等. 热泵型纯电动汽车空调系统特性 [J]. 制冷学报, 2018, 39(6): 109-114.
ZHANG Wenrong, LIU Lina, QIAN Cheng, et al. Performance of heat pump air-conditioning system for electric vehicle [J]. Journal of Refrigeration, 2018, 39(6): 109-114.
[2] DE PAULA C H, DUARTE W M, ROCHA T T M, et al. Optimal design and environmental, energy and exergy analysis of a vapor compression refrigeration system using R290, R1234yf, and R744 as alternatives to replace R134a [J]. International Journal of Refrigeration, 2020, 113: 10-20.
[3] 丁国良, 黄东平, 张春路. 跨临界循环二氧化碳汽车空调研究进展 [J]. 制冷学报, 2000(2): 7-13.
DING Guoliang, HUANG Dongping, ZHANG Chunlu. Review on application of transcritical carbon dioxide cycle in mobile air conditioners [J]. Journal of Refrigeration, 2000(2): 7-13.
[4] LORENTZEN G, Trans-critical vapour compression cycle device: 1989/000089 [P/OL]. 1990-07-12.[2019-11-24].http:∥www.freepatentsonline.com/WO1990007683.html.
[5] 俞彬彬, 王丹东, 向伟, 等. 跨临界CO2电动汽车空调系统性能分析 [J]. 上海交通大学学报, 2019, 53(7): 866-872.
YU Binbin, WANG Dandong, XIANG Wei, et al. Performance analysis of a trans-critical CO2 air conditioning system for electric vehicle [J]. Journal of Shanghai Jiao Tong University, 2019, 53(7): 866-872.
[6] LORENTZEN G J. A new, efficient and environmentally benign system for car air-conditioning [J]. International Journal of Refrigeration, 1993, 16(1): 4-12.
[7] 轩福臣, 谢晶. 跨临界CO2制冷循环系统与应用研究进展 [J]. 食品与机械, 2019, 35(8): 226-231.
XUAN Fuchen, XIE Jing. Research progress of trans-critical CO2 refrigeration cycle system and application [J]. Food & Machinery, 2019, 35(8): 226-231.
[8] ZOLCER S K M. Global market and policy trends for CO2 in refrigeration [J]. International Journal of Refrigeration, 2019, 107: 98-104.
[9] ASTRAIN D, MERINO A, CATALáN L, et al. Improvements in the cooling capacity and the COP of a transcritical CO2 refrigeration plant operating with a thermoelectric subcooling system [J]. Applied Thermal Engineering, 2019, 155: 110-122.
[10] LEE J S, KIM M S, KIM M S. Studies on the performance of a CO2 air conditioning system using an ejector as an expansion device [J]. International Journal of Refrigeration, 2014, 38: 140-152.
[11] SINGH S, SINGH A, DASGUPTA M S. CFD modeling of a scroll work recovery expander for trans-critical CO2 refrigeration system [J]. Energy Procedia, 2017, 109: 146-152.
[12] ZHANG F Z, JIANG P X, LIN Y S, et al. Efficiencies of subcritical and transcritical CO2 inverse cycles with and without an internal heat exchanger [J]. Applied Thermal Engineering, 2011, 31(4): 432-438.
[13] LLOPIS R, SANZ-KOCK C, CABELLO R, et al. Experimental evaluation of an internal heat exchanger in a CO2 subcritical refrigeration cycle with gas-cooler [J]. Applied Thermal Engineering, 2015, 80: 31-41.
[14] JONEYDI S O, ABOLHASSANI S S, RAHMANI M, et al. Comparison of transcritical CO2 refrigeration cycle with expander and throttling valve including/excluding internal heat exchanger: exergy and energy points of view [J]. Applied Thermal Engineering, 2016, 93: 779-787.
[15] 叶祖樑, 王驿凯, 潘祖栋, 等. 空气源跨临界CO2热泵中回热器影响的研究 [J]. 西安交通大学学报, 2019, 53(5): 7-14.
YE Zuliang, WANG Yikai, PAN Zudong, et al. A study on the effect of internal heat exchanger in an air-source transcritical CO2 heat pump system [J]. Journal of Xi’an Jiaotong University, 2019, 53(5): 7-14.
[16] CAO Feng, WANG Yikai, YE Zuliang. Theoretical analysis of internal heat exchanger in transcritical CO2 heat pump systems and its experimental verification [J]. International Journal of Refrigeration, 2019, 106: 506-516.
[17] WANG Dandong, YU Binbin, LI Wanyong, et al. Heating performance evaluation of a CO2 heat pump system for an electrical vehicle at cold ambient temperatures [J]. Applied Thermal Engineering, 2018, 142: 656-664.
[18] WANG Zhe, HAN Fenghui, SUNDéN B. Parametric evaluation and performance comparison of a modified CO2 transcritical refrigeration cycle in air-conditioning applications [J]. Chemical Engineering Research and Design, 2018, 131: 617-625.
[19] TORRELLA E, SáNCHEZ D, LLOPIS R, et al. Energetic evaluation of an internal heat exchanger in a CO2 transcritical refrigeration plant using experimental data [J]. International Journal of Refrigeration, 2011, 34(1): 40-49.
[20] TAO Y B, HE Y L, TAO W Q, et al. Experimental study on the performance of CO2 residential air-conditioning system with an internal heat exchanger [J]. Energy Conversion and Management, 2010, 51(1): 64-70.

相似文献/References:

[1]李青,余云松,姜钧,等.一种改进的二氧化碳吸收减排法[J].西安交通大学学报,2008,42(11):1413.[doi:10.7652/xjtuxb200811021]
 LI Qing,YU Yunsong,JIANG Jun,et al.Improved CO2 Capture Method by Absorption[J].Journal of Xi'an Jiaotong University,2008,42(06):1413.[doi:10.7652/xjtuxb200811021]
[2]刘科伟,吴裕远,程玉龙,等.回热型氨-水-溴化锂吸收式制冷机的实验研究[J].西安交通大学学报,2010,44(07):038.[doi:10.7652/xjtuxb201007009]
 LIU Kewei,WU Yuyuan,CHENG Yulong,et al.Experiment on an NH3-H2O-LiBr AbsorptionChiller with HeatRegenerators[J].Journal of Xi'an Jiaotong University,2010,44(06):038.[doi:10.7652/xjtuxb201007009]
[3]白涛,晏刚,张倩.R41跨临界单级压缩带回热器热泵系统研究[J].西安交通大学学报,2011,45(03):035.[doi:10.7652/xjtuxb201103006]
 BAI Tao,YAN Gang,ZHANG Qian.Transcritical R41 Single-Stage Compression Heat PumpCycle with Internal Heat Exchanger[J].Journal of Xi'an Jiaotong University,2011,45(06):035.[doi:10.7652/xjtuxb201103006]
[4]吴小华,杨俊玲,越云凯,等.一种新型热压缩机运行特性实验研究[J].西安交通大学学报,2017,51(11):144.[doi:10.7652/xjtuxb201711020]
 WU Xiaohua,YANG Junling,YUE Yunkai,et al.Experimental Research on Operating Characteristics of a New-Type Thermocompressor[J].Journal of Xi'an Jiaotong University,2017,51(06):144.[doi:10.7652/xjtuxb201711020]
[5]叶祖樑,王驿凯,潘祖栋,等.空气源跨临界CO2热泵中回热器影响的研究[J].西安交通大学学报,2019,53(05):001.[doi:10.7652/xjtuxb201905001]
 YE Zuliang,WANG Yikai,PAN Zudong,et al.A Study on the Effect of the Internal Heat Exchanger in an AirSource Transcritical CO2 Heat Pump System[J].Journal of Xi'an Jiaotong University,2019,53(06):001.[doi:10.7652/xjtuxb201905001]
[6]李玉峰,梁志远,邓世丰,等.高温CO2环境下耐热合金HR6W和740H的腐蚀行为[J].西安交通大学学报,2020,54(05):179.[doi:10.7652/xjtuxb202005023]
 LI Yufeng,LIANG Zhiyuan,DENG Shifeng,et al.Corrosion Behavior of Heat Resistant Alloys HR6W and 740H in High-Temperature Carbon Dioxide Environment[J].Journal of Xi'an Jiaotong University,2020,54(06):179.[doi:10.7652/xjtuxb202005023]

备注/Memo

备注/Memo:
收稿日期: 2020-01-07。作者简介: 方健珉(1995—),男,硕士生; 曹锋(通信作者),男,教授。基金项目: 国家科技重大专项资助项目(2017-Ⅲ-0010-0036); 国家自然科学基金资助项目(51976153)。
更新日期/Last Update: 2020-06-10