[1]程想,冯松,陈强,等.纽带管内吸热型碳氢燃料结焦及流动换热特性实验研究[J].西安交通大学学报,2020,54(06):133-139.[doi:10.7652/xjtuxb202006017]
 CHENG Xiang,FENG Song,CHEN Qiang,et al.Experimental Investigation on the Flow and Heat Transfer Characteristics of Endothermic Hydrocarbon Fuel During Coking in Circular Tubes with Twisted-Tape Inserts[J].Journal of Xi'an Jiaotong University,2020,54(06):133-139.[doi:10.7652/xjtuxb202006017]
点击复制

纽带管内吸热型碳氢燃料结焦及流动换热特性实验研究
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第06期
页码:
133-139
栏目:
出版日期:
2020-06-10

文章信息/Info

Title:
Experimental Investigation on the Flow and Heat Transfer Characteristics of Endothermic Hydrocarbon Fuel During Coking in Circular Tubes with Twisted-Tape Inserts
文章编号:
0253-987X(2020)06-0133-07
作者:
程想 冯松 陈强 毕勤成
西安交通大学动力工程多相流国家重点实验室, 710049, 西安
Author(s):
CHENG Xiang FENG Song CHEN Qiang BI Qincheng
State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
关键词:
纽带管 吸热型碳氢燃料 结焦 换热
Keywords:
spiral band endothermic hydrocarbon fuel coking heat transfer
分类号:
TK124
DOI:
10.7652/xjtuxb202006017
文献标志码:
A
摘要:
为了探究新型飞行器热防护结构与换热部件中结焦及流动换热机理,选择内置纽带的外径6 mm、壁厚1 mm的304型合金圆管,在质量流量为1.2 g/s、流体出口压力为3 MPa、出口温度为620 ℃的实验条件下,探究了内置纽带(扭曲比y=6.31,12.63)对吸热型碳氢燃料结焦及流动换热特性的影响。实验结果表明:相较于普通圆管,插入纽带后,结焦堵塞引起了实验段压降最大值降低了85%以上,管内结焦量减少了93%以上,实验管段外壁温随时间变化的幅度减小,相同位置的Nu有明显的提高。分析得知:螺旋纽带能使管内碳氢燃料产生旋转并引起二次流,在强化传热的同时可以冲刷附着在管内壁上的结焦沉淀,减少结焦量,进一步强化换热。
Abstract:
The mechanism of flow and heat transfer during coking in the thermal protection structure and heat transfer parts of new aircraft is explored. A Φ6 mm×1 mm 304 alloy steel tube with twisted-tape inserts is selected to perform experiments(twist ratio y=6.31, 12.63). Experiments are conducted at the mass flow rate of 1.2 g/s, the outlet pressure of 3 MPa, and the outlet temperature of 620 ℃. Results and a comparison with ordinary tubes show that the maximum value of the pressure drop in the experimental section due to coking blockage reduces by more than 85%, the amount of coke in the tube reduces by more than 93%, the variation amplitude of the outer wall temperature of the experimental tube is reduced, and Nu in the same position is significantly enhanced. These results reveal that the spiral bond can rotate the fluid in the tube and cause secondary flow. While enhancing the heat transfer, it can wash the coke deposits attached to the inner wall of the tube, reduce the amount of coking and further enhance heat transfer.

参考文献/References:

[1] GASCOIN N, GILLARD P, BERNARD S, et al. Measurements for fuel reforming for scramjet thermal management and combustion optimization: status of the COMPARER project [C]∥14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston, VA, USA: AIAA, 2006: 8005.
[2] PIZZARELLI M, NASUTI F, ONOFRI M. Coupled wall heat conduction and coolant flow analysis for liquid rocket engines [J]. Journal of Propulsion and Power, 2012, 29(1): 34-41.
[3] EDWARDS T. Cracking and deposition behavior of supercritical hydrocarbon aviation fuels [J]. Combustion Science & Technology, 2007, 178(1): 307-334.
[4] 朱锟, 邓宏武, 王英杰, 等. 超临界压力下航空煤油结焦换热综述及实验 [J]. 航空动力学报, 2010, 25(11): 2472-2478.
ZHU Kun, DENG Hongwu, WANG Yingjie, et al. Review and experimental study of the coke deposition and heat transfer characteristics of aviation kerosene at supercritical pressure [J]. Journal of Aerospace Power, 2010, 25(11): 2472-2478.
[5] 潘辉, 冯松, 刘朝晖, 等. 航空煤油RP-3热裂解结焦及流动换热特性实验研究 [J]. 西安交通大学学报, 2016, 50(7): 7-12.
PAN Hui, FENG Song, LIU Zhaohui, et al. Experimental investigation on the flow and heat transfer characteristics of aviation kerosene RP-3 during thermal pyrolysis coking [J]. Journal of Xi’an Jiaotong University, 2016, 50(7): 7-12.
[6] FU Yanchen, WEN Jie, TAO Zhi, et al. Surface coking deposition influences on flow and heat transfer of supercritical hydrocarbon fuel in helical tubes [J]. Experimental Thermal and Fluid Science, 2017, 85: 257-265.
[7] 林宗虎, 汪军, 李瑞阳, 等. 强化传热技术 [M]. 北京: 化学工业出版社, 2007: 52-53.
[8] 张昌建, 苗艾印. 内置螺旋纽带换热器强化传热性能实验分析 [J]. 节能, 2019, 38(1): 59-62.
ZHANG Changjian, MIAO Aiyin. Experimental analysis of enhanced heat transfer performance of heat exchanger with twisted tape insert [J]. Energy Conservation, 2019, 38(1): 59-62.
[9] MAN Changzhong, WANG Chong, YAO Jinyou. The current situation of the study on twisted tape inserts in pipe exchangers [J]. Journal of Marine Science and Application, 2014(13): 477-483.
[10] 吴瀚, 邓宏武, 徐国强, 等. 流动方式对航空煤油RP-3结焦的影响 [J]. 航空动力学报, 2011, 26(6): 1341-1345.
WU Han, DENG Hongwu, XU Guoqiang, et al. Effects of flow orientations on the coking characteristic of jet fuel RP-3 [J]. Journal of Aerospace Power, 2011, 26(6): 1341-1345.
[11] EDWARDS T. Aviation fuel development: past highlights and future prospects [C]∥AIAA International Air and Space Symposium and Exposition: The Next 100 Years. Reston, VA, USA: AIAA, 2003: 2611.
[12] LIU Zhaohui, PAN Hui, FENG Song, et al. Dynamic behaviors of coking process during pyrolysis of China aviation kerosene RP-3 [J]. Applied Thermal Engineering, 2015, 91: 408-416.
[13] LIU Zhaohui, BI Qincheng, GUO Yong, et al. Hydraulic and thermal effects of coke deposition during pyrolysis of hydrocarbon fuel in a mini-channel [J]. Energy & Fuels, 2012, 26(6): 3672-3679.
[14] 张赞坚, 刘朝晖, 潘辉, 等. 低流阻火箭煤油的超临界压力流动与换热特性 [J]. 西安交通大学学报, 2019, 53(1): 129-134.
ZHANG Zanjian, LIU Zhaohui, PAN Hui, et al. Flow and heat transfer characteristics of low-flow resistance rocket kerosene under supercritical pressure [J]. Journal of Xi’an Jiaotong University, 2019, 53(1): 129-134.
[15] FENG Song, BI Qincheng, PAN Hui, et al. Isobaric specific heat capacities of emulsified kerosene at high temperature and pressure [J]. Thermochimica Acta, 2018, 665, 127-133.
[16] EDWARD T, ZABAMICK S. Supercritical fuel deposition mechanisms [J]. Industrial & Engineering Chemistry Research, 1993, 32(12): 3117-3122.
[17] GUEL O, RUDNICK L R, SCHOBERT H H. Effect of the reaction temperature and fuel treatment on the deposit formation of jet fuels [J]. Energy & Fuels, 2008, 22: 433-439.
[18] HOU Lingyun, ZHANG Dingrui, ZHANG Xiaox-iong. Interaction between thermal cracking and steam reforming reactions of aviation kerosene [J]. Fuel Processing Technology, 2017, 167: 655-662.
[19] ALTIN O, ESER S. Analysis of solid deposits from thermal stressing of a JP-8 fuel on different tube surfaces in a flow reactor [J]. Industrial and Engineering Chemistry Research, 2001, 40(2): 596-603.
[20] TAO Zhi, FU Yanchen, XU Guoqiang, et al. Thermal and element analyses for supercritical RP-3 surface deposition under stable and vibration conditions [J]. Energy & Fuels, 2015, 29(3): 2006-2013.
[21] GASCOIN N, ABRAHAM G, GILLARD P. Thermal and hydraulic effects of coke deposit in hydrocarbon pyrolysis process [J]. Journal of Thermophysics and Heat Transfer, 2012, 26(1): 57-65.
[22] CHIN J S, LEFEBVRE A H. Experimental techniques for the assessment of fuel thermal stability [J]. Journal of Propulsion and Power, 1992, 8(6): 1152-1156.
[本刊相关文献链接]
潘辉,冯松,刘朝晖,等.航空煤油RP-3热裂解结焦流动换热特性实验研究.2016,50(7):7-12.[doi:10.7652/xjtuxb2016 07002]
李健武,符阳春,张志伟,等.进口雷诺数和湿空气含湿量对冲击冷却流动和传热特性的影响.2020,54(5):170-178.[doi:10.7652/xjtuxb202005022]
王瑞琴,晏鑫,何坤.带肋板尾缘开缝叶片内的流动传热性能研究.2020,54(1):150-161,183.[doi:10.7652/xjtuxb202001 019]
高中华,兰海平,潘辉,等.小通道内高参数火箭煤油流动传热特性研究.2020,54(1):108-115.[doi:10.7652/xjtuxb 202001014]
王会,郭烈锦,刁永发.梯度渗透率金属泡沫管内的流动与传热特性分析.2019,53(11):85-90.[doi:10.7652/xjtuxb 201911012]
谢福寿,雷刚,徐元元,等.自由分子流区气体外掠平板/圆柱体流动与传热预测.2019,53(3):6-12.[doi:10.7652/xjtuxb 201903002]
王娇娇,陈虹,厉彦忠,等.低温管路预冷过程两相流动与换热计算研究.2019,53(1):93-99.[doi:10.7652/xjtuxb201901 012]
张赞坚,刘朝晖,潘辉,等.低流阻火箭煤油的超临界压力流动与换热特性.2019,53(1):129-134.[doi:10.7652/xjtuxb 201901017]

备注/Memo

备注/Memo:
收稿日期: 2019-09-28。作者简介: 程想(1996—),男,硕士生; 毕勤成(通信作者),男,教授。基金项目: 国家自然科学基金资助项目(51776167); 国家科技重大专项资助项目(2017-III-0005-0029)。
更新日期/Last Update: 2020-06-10