[1]王成龙,周建星,孙文磊,等.行星齿轮传动柔性齿圈齿根动应力计算及光纤光栅检测方法[J].西安交通大学学报,2020,54(06):122-132.[doi:10.7652/xjtuxb202006016]
 WANG Chenglong,ZHOU Jianxing,SUN Wenlei,et al.Dynamic Stress Calculation and Experimental Comparative Analysis for Flexible Ring Gear Root of Planetary Gear Transmission System[J].Journal of Xi'an Jiaotong University,2020,54(06):122-132.[doi:10.7652/xjtuxb202006016]
点击复制

行星齿轮传动柔性齿圈齿根动应力计算及光纤光栅检测方法
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第06期
页码:
122-132
栏目:
出版日期:
2020-06-10

文章信息/Info

Title:
Dynamic Stress Calculation and Experimental Comparative Analysis for Flexible Ring Gear Root of Planetary Gear Transmission System
文章编号:
0253-987X(2020)06-0122-11
作者:
王成龙 周建星 孙文磊 王宏伟 乔帅 申勇
新疆大学机械工程学院, 830047, 乌鲁木齐
Author(s):
WANG Chenglong ZHOU Jianxing SUN Wenlei WANG Hongwei QIAO Shuai SHEN Yong
School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China
关键词:
行星齿轮传动系统 柔性齿圈 有限元法 载荷分配 动应力
Keywords:
planetary gear drive system flexible ring gear finite element method load
分类号:
TH132
DOI:
10.7652/xjtuxb202006016
文献标志码:
A
摘要:
为有效提取行星齿轮传动系统柔性齿圈齿根动应力,综合考虑系统动力学特性,提出了一种内齿圈动应力的计算方法。在计算中,计入行星齿轮传动系统各部件的耦合关系,建立了行星齿轮传动系统平移-扭转耦合动力学模型,提取系统动载荷时域历程。采用有限元方法建立齿圈结构动力学分析模型,将内齿圈各轮齿啮合区划分出n条接触线,并用轮齿承载接触分析(LTCA)方法确定齿间载荷分配关系。运用模态叠加法对内齿圈动力学方程解耦,采用Newmark-β法逐次积分,计算了不同载荷下内齿圈齿根动应力。与Kahraman等仿真算法以及实验结果对比,结果表明:齿根应变在一个啮合周期中,经历了单齿受压、双齿拉压以及单齿受拉3个波动过程,与光纤光栅检测结果一致,并且在不同负载下,测量误差均小于10%; 行星轮与内齿圈啮合至支撑位附近时,在支撑位置两侧形成反向对称变形趋势,应力呈现出对称分布,行星轮啮合位置远离内齿圈支撑位时,啮合位置应力明显增大,齿槽结构对齿圈齿根应力影响显著。
Abstract:
To effectively extract the dynamic stress of the flexible ring gear root of the planetary gear transmission system and comprehensively consider the dynamic characteristics of the system, a calculation for dynamic stress of the ring gear is carried out. In this calculation, taking the coupling relationship of the components of the planetary gear transmission system into account, the translation and torsion coupling dynamic model of the planetary gear transmission system is established, and the dynamic load time history of the system is extracted. The dynamic analysis model of ring gear structure is constructed with finite element method. The meshing area of each tooth in the ring gear is divided into n contact lines, and the dynamic equations of ring gear are decoupled by mode superposition, the dynamic stress of the ring gear root under different loads is calculated with Newmark-β method. The effectiveness of the calculation method is verified by comparing with Kahraman and the other simulation algorithms and experimental results. The results show that in a meshing period, the tooth root strain has experienced three wave processes, i.e. single tooth compression, double tooth tension and single tooth tension, which are consistent with the fiber Bragg grating detection results, and the measurement error is less than 10% under different loads. When the planetary gear and the ring gear are meshed near the support position, the opposite symmetrical deformation trend is formed on both sides of the support position, and the stress distributes symmetrically. When the planetary gear is meshed away from the inner ring gear support position, the stress at the meshing position increases significantly, and the tooth groove structure exerts a significant impact on stress at ring gear root.

参考文献/References:

[1] KAHRAMAN A. Load sharing characteristics of planetary transmissions [J]. Mechanism and Machine Theory, 1994, 29(8): 1151-1165.
[2] GUO Yichao, PARKER R G. Sensitivity of general compound planetary gear natural frequencies and vibration modes to modal parameters [J]. Journal of Vibration and Acoustics, 2010, 132(1): 011006.
[3] LIN Jian, PARKER R G. Analytical characterization of the unique properties of planetary gear free vibration [J]. Journal of Vibration and Acoustics, 1999, 121(3): 316-321.
[4] 秦大同, 周志刚, 杨军, 等. 随机风载作用下风力发电机齿轮传动系统动态可靠性分析 [J]. 机械工程学报, 2012, 48(3): 1-8.
QIN Datong, ZHOU Zhigang, YANG Jun, et al. Dynamic reliability analysis of wind turbine gear drive system under random wind load [J]. Journal of Mechanical Engineering, 2012, 48(3): 1-8.
[5] 周建星, 孙文磊, 曹莉, 等. 行星齿轮传动系统碰撞振动特性研究 [J]. 西安交通大学学报, 2016, 50(3): 16-21.
ZHOU Jianxing, SUN Wenlei, CAO Li, et al. Study on the impact vibration characteristics of planetary gear transmission system [J]. Journal of Xi’an Jiaotong University, 2016, 50(3): 16-21.
[6] ICHIMARU K, HIRANO F. Dynamic behavior of heavy-loaded spur gears [J]. Journal of Engineering for Industry, 1974, 96(2): 373-381.
[7] CHABERT G, TRAN T D, MATHIS R. An evaluation of stresses and deflection of spur gear teeth under strain [J]. Journal of Engineering for Industry, 1974, 96(1): 85.
[8] ODA S, NAGAMURA K, AOKI K. Stress Analysis of thin rim spur gears by finite-element method [J]. Bulletin of the Japan Society of Mechanical Engineers, 1981, 24(193): 1273-1280.
[9] ODA S, MIYACHIKA K, KOIDE T. Stress analysis of thin-rimmed spur gears by boundary element method [J]. Bulletin of the Japan Society of Mechanical Engineers, 1986, 29(248): 593-599.
[10] LIN H H, LEE C, OSWALD F B, et al. Computer-aided design of high-contact-ratio gears for minimum dynamic load and stress [J]. Journal of Mechanical Design, 1993, 115(1): 171.
[11] THIRUMURUGAN R, MUTHUVEERAPPAN G. Maximum fillet stress analysis based on load sharing in normal contact ratio spur gear drives [J]. Mechanics Based Design of Structures and Machines, 2010, 38(2): 204-226.
[12] KAHRAMAN A, KHARAZI A A, UMRANI M. A deformable body dynamic analysis of planetary gears with thin rims [J]. Journal of Sound and Vibration, 2003, 262(3): 752-768.
[13] 王统. 有限元法对齿根部位应力分布形态的研究 [J]. 上海交通大学学报, 1981, 15(1): 17-38.
WANG Tong. Study on the stress distribution pattern of tooth root by finite element method [J]. Journal of Shanghai Jiaotong University, 1981, 15(1): 17-38.
[14] 李盛鹏, 方宗德, 张金良, 等. 弧齿锥齿轮齿根弯曲应力分析 [J]. 航空动力学报, 2007, 22(5): 177-182.
LI Shengpeng, FANG Zongde, ZHANG Jinliang, et al. Bending stress analysis of spiral bevel gear root [J]. Journal of Aerospace Power, 2007, 22(5): 177-182.
[15] 李杰, 王乐勤, 孙青军. 渐开线轮齿的弯曲应力参数化分析 [J]. 航空动力学报, 2009, 24(2): 236-242.
LI Jie, WANG Leqin, SUN Qingjun. Parametric analysis of bending stress of involute gear teeth [J]. Journal of Aerospace Power, 2009, 24(2): 236-242.
[16] 唐进元, 彭方进, 黄云飞. 冲击载荷下的齿轮动应力变化规律数值分析 [J]. 振动与冲击, 2009, 28(8): 138-143, 205.
TANG Jinyuan, PENG Fangjin, HUANG Yunfei. Numerical analysis of dynamic stress variation of gear under impact load [J]. Journal of Vibration and Shock, 2009, 28(8): 138-143, 205.
[17] 刘忠明, 袁玉鹏, 肖伟中, 等. 大模数齿条齿根应力计算方法研究及测试 [J]. 机械工程学报, 2016, 52(23): 23-26.
LIU Zhongming, YUAN Yupeng, XIAO Weizhong, et al. Research and test on calculation method of rack root stress with large modulus [J]. Journal of Mechanical Engineering, 2016, 52(23): 23-26.
[18] VIJAYARANGAN S, GANESAN N. A study of dynamic stresses in a spur gear under a moving line load and impact load conditions by a three-dimensional finite element method [J]. Journal of Sound & Vibration, 1993, 162(1): 185-189.
[19] QU Yongzhi, HONG Liu, JIANG Xixin, et al. Experimental study of dynamic strain for gear tooth using fiber Bragg gratings and piezoelectric strain sensors [EB/OL]. [2019-10-11]. https: ∥journals.sagepub. com/doi/10.1177/0954406217744000.
[20] KAHRAMAN A, SINGH R. Interactions between time-varying mesh stiffness and clearance non-linearities in a geared system [J]. Journal of Sound and Vibration, 1991, 146(1): 135-156.
[21] LITVIN F L, CHEN J S, LU J. Application of finite element analysis for determination of load share, real contact ratio, precision of motion, and stress analysis [J]. Journal of Mechanical Design, 1996, 168(4): 561-567.
[22] 朱孝录. 齿轮传动设计手册 [M]. 北京: 化学工业出版社, 2005: 42-46.
[本刊相关文献链接]
胡升阳,方宗德.行星传动均载及动载系数定义改进与分析.2019,53(8):40-46,113.[doi:10.7652/xjtuxb201908006]
王凯,付敏,王珏翎.滚子包络端面啮合蜗杆传动的啮合性能分析.2019,53(3):135-142.[doi:10.7652/xjtuxb201903019]
邹创,陶涛,姜歌东,等.考虑力学特性的谐波齿轮啮合参数优化方法.2019,53(2):16-23.[doi:10.7652/xjtuxb201902 003]
白恩军,谢里阳,胡杰鑫.考虑啮合齿对失效相关性的齿轮系统可靠性评估.2018,52(5):38-43.[doi:10.7652/xjtuxb 201805005]
朱丽莎,向磊,邹常青.齿间动态载荷分配下的齿轮磨损分析.2018,52(5):75-80.[doi:10.7652/xjtuxb201805011]

备注/Memo

备注/Memo:
收稿日期: 2019-11-22。作者简介: 王成龙(1992—),男,硕士生; 周建星(通信作者),男,教授。基金项目: 国家自然科学基金资助项目(51665054)。
更新日期/Last Update: 2020-06-10