[1]李志涛,王世军,韩子锐,等.应用改进分形理论及连续变形理论的机械结合面切向刚度建模[J].西安交通大学学报,2020,54(06):107-114.[doi:10.7652/xjtuxb202006014]
 LI Zhitao,WANG Shijun,HAN Zirui,et al.Modeling of Tangential Stiffness of Mechanical Joint Surface Using Improved Fractal Theory and Continuous Deformation Theory[J].Journal of Xi'an Jiaotong University,2020,54(06):107-114.[doi:10.7652/xjtuxb202006014]
点击复制

应用改进分形理论及连续变形理论的机械结合面切向刚度建模
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第06期
页码:
107-114
栏目:
出版日期:
2020-06-10

文章信息/Info

Title:
Modeling of Tangential Stiffness of Mechanical Joint Surface Using Improved Fractal Theory and Continuous Deformation Theory
文章编号:
0253-987X(2020)06-0107-08
作者:
李志涛1 王世军1 韩子锐1 卫娟娟1 赵金娟2 李鹏阳1
1.西安理工大学机械与精密仪器工程学院, 710048, 西安; 2.西安理工大学印刷包装与数字媒体学院, 710048, 西安
Author(s):
LI Zhitao1 WANG Shijun1 HAN Zirui1 WEI Juanjuan1 ZHAO Jinjuan2 LI Pengyang1
1. School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China; 2. School of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China
关键词:
连续变形理论 改进分形理论 结合面 切向刚度
Keywords:
continuous deformation theory improved fractal theory joint surface
分类号:
TH113.1
DOI:
10.7652/xjtuxb202006014
文献标志码:
A
摘要:
针对现有分形理论在建立切向刚度模型时未考虑微凸体变形的连续性以及未考虑结合面在即将发生切向滑移之前静摩擦力导致实际接触面积增大的问题,提出了应用改进分形理论及连续变形理论的切向刚度建模方法。该方法以微凸体连续变形理论为基础,应用改进分形理论分析静摩擦力与实际接触面积之间的关系,并利用赫兹接触理论推导了结合面法向接触载荷; 随后,根据切向刚度的产生机理,推导了包含弹塑性过渡阶段的切向接触载荷,结合所推导的法向、切向接触载荷从而建立了结合面切向刚度模型。为验证该方法的合理性,首先建立栓接结合部的有限元模型,利用超景深三维显微系统VHX-5000获取结合面的轮廓数据,经过功率谱密度法获取结合面的分形参数,通过虚拟材料将该方法以及对比方法计算的刚度输入有限元模型中进行仿真,得到栓接结合部在不同扭紧力矩下的前三阶固有频率及振型; 随后搭建包含栓接结合部的实验装置,通过锤击实验也获取该装置在不同扭紧力矩的前三阶固有频率及振型。在相同扭紧力矩下的前三阶固有频率对比实验和仿真结果表明:该方法的仿真与实验结果之间最大相对误差为3.84%,相比于田红亮的方法降低了54.45%,说明该方法能够更加准确地预测结合面动态特性。
Abstract:
A method for modeling tangential stiffness based on fractal theory and the continuous deformation theory is presented to solve the problem that the existing fractal contact theory does not consider the continuity of asperity deformation, and the problem that the static friction force leads to an increase of real contact area of the binding surface before the tangential slip occurs when establishing the tangential stiffness model. The method bases on the continuous deformation theory of asperity, uses an improved fractal theory to analyze the relationship between static friction force and real contact area Hertz contact theory is used to derive the normal contact load of joint. According to the generating mechanism of tangential stiffness, the tangential contact load with the elastoplastic transition stage is also derived. Then a tangential stiffness model of joint is established by combining the derived normal and tangential contact loads. In order to verify the rationality of the method, a finite element model of bolt joint is built. In the finite model, the profile data of the contact surfaces of the joint are obtained by a ultra-depth three-dimensional microscope system VHX-5000, and then the fractal parameters of joint are obtained by the power spectrum density method. The first three order natural frequencies and vibration shapes of bolt joint are computed under different torques by inputting the stiffnesses of joint resulting from virtual material method and a comparison method into the finite element model for simulation of bolt joint. A experimental device including bolt joint is built, and then the first three order natural frequencies and vibration shapes of the device are also obtained under different torques by hammering experiments. Comparisons between experimental natural frequencies and computing natural frequencies under the same torques show that the maximum relative error of the simulation results is about 3.84% relative to experiment results, and it is 54.45% lower than Tian Hongliang method. These results show that the proposed method can more accurately predict the dynamic performance of joint.

参考文献/References:

[1] 孙宝财, 丁雪兴, 陈金林, 等. 干气密封摩擦界面法向接触刚度分形模型 [J]. 振动与冲击, 2019, 38(18): 248-255.
SUN Baocai, DING Xuexing, CHEN Jinlin, et al. Fractal model for the normal contact stiffness of frictional interface in dry gas seals [J]. Journal of Vibration and Shocks, 2019, 38(18): 248-255.
[2] 陈建江, 原园, 徐颖强. 粗糙表面的加卸载分形接触解析模型 [J]. 西安交通大学学报, 2018, 52(3): 98-110.
CHEN Jianjiang, YUAN Yuan, XU Yingqiang. An analytical model of loading-unloading contact between rough surfaces based on fractal theory [J]. Journal of Xi’an Jiaotong University, 2018, 52(3): 98-110.
[3] 张学良, 温淑花, 徐格宁, 等. 结合部切向接触刚度分形模型研究 [J]. 应用力学学报, 2003, 20(1): 70-72.
ZHANG Xueliang, WEN Shuhua, XU Gening, et al. Fractal model of the tangential contact stiffness of machined surfaces in contact [J]. Chinese Journal of Applied Mechanics, 2003, 20(1): 70-72.
[4] CHEN Qi, HUANG Kang, ZHAO Han, et al. Simulation and analysis of the model of calculating contact tangential stiffness between cylinders’ joint interfaces by MATLAB [J]. Applied Mechanics and Materials, 2012, 190-191: 177-181.
[5] 刘鹏, 陈奇, 樊浩, 等. 考虑摩擦的球面切向接触刚度分形模型研究 [J]. 中国机械工程, 2016, 27(20): 2773-2778.
LIU Peng, CHEN Qi, FAN Hao, et al. Research on fractal model of TCS between spherical surfaces considering friction factors [J]. China Mechanical Engineering, 2016, 27(20): 2773-2778.
[6] 李小彭, 鞠行, 赵光辉, 等. 考虑摩擦因素的结合面切向接触刚度分形预估模型及其仿真分析 [J]. 摩擦学学报, 2013, 33(5): 463-468.
LI Xiaopeng, JU Xing, ZHAO Guanghui, et al. Fractal prediction model for tangential contact stiffness of joint surface considering friction factors and its simulation analysis [J]. Tribology, 2013, 33(5): 463-468.
[7] 潘五九, 李小彭, 李木岩, 等. 机械结合面切向接触刚度的三维分形理论模型 [J]. 振动工程学报, 2017, 30(4): 577-586.
PAN Wujiu, LI Xiaopeng, LI Muyan, et al. Three-dimensional fractal theory modeling of tangential contact stiffness of mechanized joint surfaces [J]. Journal of Vibration Engineering, 2017, 30(4): 577-586.
[8] JIANG Shuyun, ZHENG Yunjian. A contact stiffness model of machined joint surfaces [J]. ASME Journal of Tribology, 2010(132): 011401.
[9] JHONSON K L. Contact mechanics [M]. Cambridge, UK: Cambridge University Press, 1985: 45-50.
[10] COURTNEY-PRATT J S, EISNER E. The effect of a tangential force on the contact of metallic bodies [J]. Proceedings of the Royal Society of London: A Mathematical, Physical and Engineering Sciences, 1957, 238(1215): 529-550.
[11] MCFARLANE J S, TABOR D. Relation between friction and adhesion [J]. Proceedings of the Royal Society of London: A Mathematical, Physical and Engineering Sciences, 1950, 202(1069): 244-253.
[12] 陈永会, 张学良, 温淑花, 等. 考虑分布域扩展因子的结合面法向接触阻尼建模 [J]. 西安交通大学学报, 2019, 53(7): 126-135.
CHEN Yonghui, ZHANG Xueliang, WEN Shuhua, et al. Normal contact damping modeling on joint surfaces considering expansion factor of distribution domain [J]. Journal of Xi’an Jiaotong University, 2019, 53(7): 126-135.
[13] 何联格, 左正兴, 向建华. 考虑微凸体弹塑性过渡变形机制的结合面法向接触刚度分形模型 [J]. 上海交通大学学报, 2015, 49(1): 116-121.
HE Liange, ZUO Zhengxing, XIANG Jianhua. Normal contact stiffness fractal model considering asperity elastic-plastic transitional deformation mechanism of joint [J]. Journal of Shanghai Jiaotong University, 2015, 49(1): 116-121.
[14] MINDLIN R D, DERESIEWICZ H. Elastic sphere in contact under varying oblique forces [J]. Journal of Applied Mechanics, 1953, 20: 327-344.
[15] 葛世荣, 索双福. 表面轮廓分形维数计算方法的研究 [J]. 摩擦学学报, 1997, 17(4): 354-362.
GE Shirong, SUO Shuangfu. The computation methods for the Fractal dimension of surface profiles [J]. Tribology, 1997, 17(4): 354-362.
[16] MAJUMDAR A, BHUSHAN B. Fractal model of elastic-plastic contact between rough surfaces [J]. Journal of Tribology, 1991(113): 1-11.
[17] 王世军, 赵金娟. 机械工程中的有限元方法 [M]. 北京: 科学出版社, 2019: 237-239.
[18] 赵金娟, 王世军, 杨超, 等. 基于横观各向同性假定的固定结合部本构关系及有限元模型 [J]. 中国机械工程, 2016, 27(8): 1007-1011.
ZHAO Jinjuan, WANG Shijun, YANG Chao, et al. A constitutive law based on transverse isotropic hypothesis and finite element model of fixed joint [J]. China Mechanical Engineering, 2016, 27(8): 1007-1011.
[19] 张学良, 范世荣, 温淑花, 等. 基于等效横观各向同性虚拟材料的固定结合部建模方法 [J]. 机械工程学报, 2017, 53(15): 141-147.
ZHANG Xueliang, FAN Shirong, WEN Shuhua, et al. Modeling method of the fixed joint interfaces based on equivalent transversely inotropic virtual material [J]. Journal of Mechanical Engineering, 2017, 53(15): 141-147.
[20] 田红亮, 陈从平, 方子帆, 等. 应用改进分形几何理论的结合部切向刚度模型 [J]. 西安交通大学学报, 2014, 48(7): 46-52.
TIAN Hongliang, CHEN Congping, FANG Zifan, et al. Tangential stiffness model for joint interface adopting the revised fractal geometric theory [J]. Journal of Xi’an Jiaotong University, 2014, 48(7): 46-52.

备注/Memo

备注/Memo:
收稿日期: 2019-12-06。作者简介: 李志涛(1995—),男,硕士生; 王世军(通信作者),男,副教授,硕士生导师。基金项目: 国家自然科学基金资助项目(51675422); 陕西省科技厅科技统筹创新工程重点实验室资助项目(2014SZS10-P05)。
更新日期/Last Update: 2020-06-10