[1]蒋进科,刘钊,刘红梅.齿面磨损最小直齿锥齿轮Ease-off修形设计与分析[J].西安交通大学学报,2020,54(06):099-106.[doi:10.7652/xjtuxb202006013]
 JIANG Jinke,LIU Zhao,LIU Hongmei.Design and Analysis for Straight Bevel Gears with Ease-Off Flank Modification Based on Minimal Wear[J].Journal of Xi'an Jiaotong University,2020,54(06):099-106.[doi:10.7652/xjtuxb202006013]
点击复制

齿面磨损最小直齿锥齿轮Ease-off修形设计与分析
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第06期
页码:
099-106
栏目:
出版日期:
2020-06-10

文章信息/Info

Title:
Design and Analysis for Straight Bevel Gears with Ease-Off Flank Modification Based on Minimal Wear
文章编号:
0253-987X(2020)06-0099-08
作者:
蒋进科12 刘钊12 刘红梅12
1.长安大学汽车学院, 710064, 西安; 2.长安大学汽车运输安全保障技术交通行业重点实验室, 710064, 西安
Author(s):
JIANG Jinke12 LIU Zhao12 LIU Hongmei12
1. School of Automotive, Chang’an University, Xi’an 710064, China; 2. Key Laboratory of Automotive Transportation Safety Techniques of Ministry of Transport, Chang’an University, Xi’an 710064, China
关键词:
直齿锥齿轮 Ease-off修形 齿面磨损 承载接触分析
Keywords:
straight bevel gear Ease-off modified tooth wear loaded tooth contact analysis
分类号:
TH132.4; TH117.1
DOI:
10.7652/xjtuxb202006013
文献标志码:
A
摘要:
为了改善齿轮传动性能和可靠性,提出了直齿锥齿轮齿面抗磨设计与分析方法。该方法结合碟型刀具在摇台型机床切制直齿锥齿轮方法获得大轮齿面; 通过预置传动误差及抛物线修形参数设计小轮法向Ease-off曲面,并叠加于大轮的共轭齿面表达修形齿面。结合齿面接触分析、承载接触分析、Archard磨损公式,提出考虑磨损深度影响的齿面承载接触分析数值方法,将齿面几何分析与力学分析融为一体,且充分考虑了安装误差、齿面修形和磨损的耦合性,可准确快速获得齿形重构后的齿面磨损量; 以无磨损时承载传动误差幅值(ALTE)最小、齿面磨损次数最多进行修形优化设计,获得最优Ease-off曲面,并分析磨损对ALTE的影响。结果表明:相同磨损量下,随载荷的增加磨损次数逐渐减少且趋于相等; 随齿形重构次数增加,主要是双齿啮合区的齿面初始间隙增加,导致承载变形增大; 多载荷工况下,随磨损次数增加最小ALTE及其对应的载荷逐渐增大; 共轭齿面轻度磨损后ALTE有所改善。
Abstract:
An approach of ease-off flank modification for straight bevel gears is proposed to improve meshing performances and reliability. By means of technology of milling straight bevel gear with plate cutters on a cradle generator, the modified pinion is represented by a sum of two vector functions determining the conjugate gear tooth, and normal ease-off deviations expressed by both predesigned transmission error function and tooth profile modification curves. Then a numerical method of loaded wear tooth contact analysis considering wear is introduced according to tooth contact analysis, loaded tooth contact analysis and Archard formula of wear, which combines tooth surface geometry analysis with mechanical analysis and fully considers the coupling of alignment error, tooth surface modification and wear. So the wear depth of tooth profile reconstituted is obtained accurately and quickly. The best ease-off modification is determined by optimizing with minimal amplitude of loaded transmission error(ALTE)and maximal wear times as the objectives, and the influences of wear on ALTE are explored. The results show that the wear times with the same depths gradually decrease and tend to equal as increasing loads. The increasing wear times lead to increasing initial contact clearances from meshing zone of two pairs, which is mainly responsible for increasing meshing deformations. Under multi-load conditions, minimum ALTE and the corresponding load increase gradually with increasing wear times; mild wear facilitates reducing ALTE for conjugate tooth.

参考文献/References:

[1] WU S, CHENG H S. Sliding wear calculation in spur gears [J]. Journal of Tribology, 1993, 115(3): 493-500.
[2] FLODIN A, ANDERSSON S. Simulation of mild wear in spur gears [J]. Wear, 1997, 207(12): 16-23.
[3] LUNDVALL O, KLARBRING A. Simulation of wear by use of a nonsmooth Newton method: a spur gear application [J]. Mechanics of Structures and Machines, 2001, 29(2): 223-238.
[4] MASJEDI M, KHONSARI M M. On the prediction of steady-state wear rate in spur gears [J]. Wear, 2015, 342: 234-243.
[5] BAJPAI P, KAHRAMAN A, ANDERSON N E. A surface wear prediction methodology for parallel-axis gear pairs [J]. Journal of Tribology, 2004, 126(3): 597-605.
[6] KAHRAMAN A, BAJPAI P, ANDERSON N E. Influence of tooth profile deviations on helical gear wear [J]. Journal of Mechanical Design, 2005, 127(4): 656-663.
[7] WOJNAROWSKI J, ONISHCHENKO V. Tooth wear effects on spur gear dynamics [J]. Mechanism and Machine Theory, 2003, 38(2): 161-178.
[8] YUKSEL C, KAHRAMAN A. Dynamic tooth loads of planetary gear sets having tooth profile wear [J]. Mechanism and Machine Theory, 2004, 39(7): 695-715.
[9] DING H, KAHRAMAN A. Interactions between nonlinear spur gear dynamics and surface wear [J]. Journal of Sound and Vibration, 2007, 307(3/4/5): 662-679.
[10] OSMAN T, VELEX P. Static and dynamic simulations of mild abrasive wear in wide-faced solid spur and helical gears [J]. Mechanism and Machine Theory, 2010, 45(6): 911-924.
[11] PARK D, KAHRAMAN A. A surface wear model for hypoid gear pairs [J]. Wear, 2009, 267(9/10): 1595-1604.
[12] 潘冬, 赵阳, 李娜, 等. 齿轮磨损寿命预测方法 [J]. 哈尔滨工业大学学报, 2012, 44(9): 29-33.
PAN Dong, ZHAO Yang, LI Na, et al. The wear life prediction method of gear system [J]. Journal of Harbin Institute of Technology, 2012, 44(9): 29-33.
[13] 张俊, 卞世元, 鲁庆, 等. 准静态工况下渐开线直齿轮齿面磨损建模与分析 [J]. 机械工程学报, 2017, 53(5): 136-144.
ZHANG Jun, BIAN Shiyuan, LU Qing, et al. Quasi-static-model-based wear analysis of spur gears [J]. Journal of Mechanical Engineering, 2017, 53(5): 136-144.
[14] 周长江, 雷玉英, 汪红兵, 等. 准静态与动态载荷下斜齿轮齿面粘着磨损计算 [J]. 机械工程学报, 2018, 54(23): 24-36.
ZHOU Changjiang, LEI Yuying, WANG Hongbing, et al. Adhesive wear models for helical gears under quasi-static and dynamic loads [J]. Journal of Mechanical Engineering, 2018, 54(23): 24-36.
[15] 周长江, 汪红兵, 雷玉英, 等. 齿轮磨损计算与测试方法及抑制技术 [J]. 北京工业大学学报, 2018, 44(7): 987-1000.
ZHOU Changjiang, WANG Hongbing, LEI Yuying, et al. Calculating and measuring methods for gear wear and its suppression techniques [J]. Journal of Beijing University of Technology, 2018, 44(7): 987-1000.
[16] 张建阁, 刘少军, 方特. 混合润滑下齿面磨损预测研究及试验验证 [J]. 华南理工大学学报(自然科学版), 2018, 46(2): 22-30.
ZHANG Jiange, LIU Shaojun, FANG Te. Prediction of gear wear rate in mixed lubrication and experimental verification [J]. Journal of South China University of Technology(Natural Science Edition), 2018, 46(2): 22-30.
[17] 杨勇, 王家序, 周青华, 等. 考虑摩擦的磨损和修形齿轮啮合刚度计算 [J]. 工程科学与技术, 2018, 50(2): 212-219.
YANG Yong, WANG Jiaxu, ZHOU Qinghua, et al. Stiffness calculation considering friction for a spur gear with tooth wear and profile modification [J]. Advanced Engineering Sciences, 2018, 50(2): 212-219.
[18] 王晓笋, 巫世晶, 陈杰, 等. 考虑动载荷与动态磨损系数的直齿轮传动系统动态磨损特性 [J]. 中南大学学报(自然科学版), 2014, 45(2): 408-413.
WANG Xiaosun, WU Shijing, CHEN Jie, et al. Dynamic surface wear characteristics in spur gear transmission system with dynamic loads and wear coefficients [J]. Journal of Central South University(Science and Technology), 2014, 45(2): 408-413.
[19] 谭援强, 蒋理宽, 姜胜强. 渐开线花键副微动摩擦接触分析 [J]. 机械工程学报, 2018, 54(7): 123-130.
TAN Yuanqiang, JIANG Likuan, JIANG Shengqiang. The fretting frictional contact analysis of involute spline coupling [J]. Journal of Mechanical Engineering, 2018, 54(7): 123-130.
[20] 张周立, 郑长松, 陈建文. 基于动态啮合力的齿轮磨损量计算方法 [J]. 广西大学学报(自然科学版), 2018, 43(3): 880-890.
ZHANG Zhouli, ZHENG Changsong, CHEN Jianwen. A wear prediction model for spur gears based on the dynamic meshing force [J]. Journal of Guangxi University(Natural Science Edition), 2018, 43(3): 880-890.
[21] 王凯达, 张瑞亮, 王铁. 齿面磨损及轴承间隙对齿轮动力学的影响研究 [J]. 机械传动, 2019, 43(9): 15-21.
WANG Kaida, ZHANG Ruiliang, WANG Tie. Research of the influence of tooth surface wear and bearing clearance on gear dynamics [J]. Journal of Mechanical Transmission, 2019, 43(9): 15-21.
[22] 任望, 刘杰, 赵伟强. 齿面磨损对齿轮系统动态特性的影响 [J]. 润滑与密封, 2019, 44(11): 67-72.
REN Wang, LIU Jie, ZHAO Weiqiang. Effect of tooth surface wear on dynamic characteristics of gear system [J]. Lubrication Engineering, 2019, 44(11): 67-72.
[23] 朱丽莎, 向磊, 邹常青. 齿间动态载荷分配下的齿轮磨损分析 [J]. 西安交通大学学报, 2018, 52(5): 80-85.
ZHU Lisha, XIANG Lei, ZOU Changqing. Wear analysis of gears under dynamic load distribution between gear teeth [J]. Journal of Xi’an Jiaotong University, 2018, 52(5): 80-85.
[24] JANAKIRAMAN V, LI S, KAHRAMAN A. An investigation of the impacts of contact parameters on wear coefficient [J]. Journal of Tribology, 2014, 136(3): 031602.

备注/Memo

备注/Memo:
收稿日期: 2019-12-25。作者简介: 蒋进科(1981—),男,博士,工程师。基金项目: 中央高校基本科研业务费资助项目(300102228103); 陕西省自然科学研究计划资助项目(2018JM5089)。
更新日期/Last Update: 2020-06-10