[1]陈东菊,李源,查春青,等.动态参数影响下液体静压主轴运动精度分析及优化[J].西安交通大学学报,2020,54(06):090-98.[doi:10.7652/xjtuxb202006012]
 CHEN Dongju,LI Yuan,ZHA Chunqing,et al.Analysis and Optimization of Motion Accuracy of Hydrostatic Spindle Under Influence of Dynamic Parameters[J].Journal of Xi'an Jiaotong University,2020,54(06):090-98.[doi:10.7652/xjtuxb202006012]
点击复制

动态参数影响下液体静压主轴运动精度分析及优化
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第06期
页码:
090-98
栏目:
出版日期:
2020-06-10

文章信息/Info

Title:
Analysis and Optimization of Motion Accuracy of Hydrostatic Spindle Under Influence of Dynamic Parameters
文章编号:
0253-987X(2020)06-0090-09
作者:
陈东菊 李源 查春青 潘日 范晋伟
北京工业大学机械工业重型机床数字化设计与测试技术重点实验室, 100124, 北京
Author(s):
CHEN Dongju LI Yuan ZHA Chunqing PAN Ri FAN Jinwei
Mechanical Industry Key Laboratory of Heavy Machine Tool Digital Design and Testing, Beijing University of Technology, Beijing 100124, China
关键词:
超精密加工 液体静压主轴 运动误差 动态参数 遗传算法
Keywords:
ultra-precision machining hydrostatic spindle motion error dynamic parameter genetic algorithm
分类号:
TG156
DOI:
10.7652/xjtuxb202006012
文献标志码:
A
摘要:
针对现有液体静压主轴运动误差分析及优化的不足,基于液体静压主轴的结构参数,建立了主轴运动误差的动力学模型,定量分析了在不平衡质量作用下主轴转子不同转速下的动态参数变化规律。以主轴运动误差数学模型作为目标函数,以主轴系统参数作为设计变量,采用遗传算法对液体静压主轴系统的运动误差进行优化分析。单一因素优化分析时,主轴系统径向误差运动x、y、主轴倾角θ的优化效率分别为41.22%、25.21%、66.16%,多目标优化时效率为4.7%。优化后的主轴运动精度都有了显著的提高,并得到了提高液体静压主轴运动精度的结构参数组合。
Abstract:
In view of lack of analysis and optimization of existing hydrostatic spindle motion errors, a dynamic model of the spindle motion error is constructed based on structural parameters, and the laws of dynamic parameters of the spindle rotor at different rotational speeds with an unbalanced mass are quantitatively analyzed. The mathematical model of the spindle motion error is taken as the objective function, and the spindle system parameters are used as design variables. Genetic algorithm is adopted to optimize the motion error of the hydrostatic spindle system. In the single-factor optimization analysis, the optimization efficiency for the radial error motions x and y of the spindle system and the spindle inclination angle θ reaches 41.22%, 25.21% and 66.16%, respectively, and the efficiency gets 4.7% during multi-objective optimization. The optimized spindle motion accuracy is significantly improved, and a combination of structural parameters is obtained to heighten the hydraulic static pressure spindle motion accuracy.

参考文献/References:

[1] CORBETT J, MCKEOWN P A, PEGGS G N, et al. Nanotechnology: international developments and emerging products [J]. Annals of the CIRP, 2000, 49(2): 523-545.
[2] 孙岩辉, 洪军, 刘志刚, 等. 考虑零部件制造误差的精密主轴几何回转精度计算方法 [J]. 机械工程学报, 2017, 53(3): 173-182.
SUN Yanhui, HONG Jun, LIU Zhigang, et al. A calculating method for the geometric rotation accuracy of precision spindles considering the manufacturing errors of component parts [J]. Journal of Mechanical Engineering, 2017, 53(3): 173-182.
[3] 熊有伦. 精密测量的数学方法 [M]. 北京: 中国计量出版社, 1989: 255-271.
[4] MARTIN D L, TABENKIN A N, PARSONS F G. Precision spindle and bearing error analysis [J]. International Journal of Machine Tools and Manufacture, 1995, 35(2): 187-193.
[5] GAO W, TANO M, ARAKI T, et al. Measurement and compensation of error motions of a diamond turning machine [J]. Precision Engineering, 2007, 31(3): 310-316.
[6] HUANG P, LEE W B, CHEN C Y. Investigation on the position drift of the axis average line of the aerostatic bearing spindle in ultra-precision diamond turning [J]. International Journal of Machine Tools & Manufacture, 2016, 108: 44-51.
[7] KIM K S, KIM K. An analytical study on the rotational accuracy of externally pressurized air journal bearing [J]. JSME International Journal Series: C Mechanical System Machine Elements and Manufacturing, 1992, 35(3): 485-492.
[8] HUANG P, LEE W B, CHEN C Y. Investigation of the effects of spindle unbalance induced error motion on machining accuracy in ultra-precision diamond turning [J]. International Journal of Machine Tools & Manufacture, 2015, 94: 48-56.
[9] 王伟, 张敏, 梅雄, 等. 多孔质空气静压主轴动态回转误差的影响机理分析 [J]. 工程科学与技术, 2017, 49(5): 191-198.
WANG Wei, ZHANG Min, MEI Xiong, et al. Influence mechanism analysis of rotary error on porous aerostatic spindle [J]. Advanced Engineering Sciences, 2017, 49(5): 191-198.
[10] SUN Fangjin. An analytical study on the rotational accuracy of aerostatic journal bearing [J]. Chinese Journal of Scientific Instrument, 1991, 12(3): 324-328.
[11] KASHCHENEVSKY L, KNAPP B R. Predicting the rotational accuracy of hydrostatic spindle [C]∥ASPE Summer Topical Meeting. Pennsylvania, USA: Pennsylvania State University, 2001: 52-55.
[12] LI Shusen, LIU Tun. Analysis of the dynamics of precision centrifuge spindle system with the externally pressurized gas bearing [J]. Chinese Journal of Mechanical Engineering, 2005, 41(2): 28-32.
[13] AN C H, ZHANG Y, XU Q, et al. Modeling of dynamic characteristic of the aerostatic bearing spindle in an ultra-precision fly cutting machine [J]. International Journal of Machine Tools and Manufacture, 2010, 50(4): 374-385.
[14] 熊万里, 侯志泉, 吕浪. 液体静压主轴回转误差的形成机理研究 [J]. 机械工程学报, 2014, 50(7): 112-119.
XIONG Wanli, HOU Zhiquan, Lü Lang. Study on the mechanism of hydrostatic spindle rotational error motion [J]. Journal of Mechanical Engineering, 2014, 50(7): 112-119.
[15] HUI X, SHULIN D, ZHANHUA W. Bearing lubrication optimization for diesel engine based on orthogonal design method [C]∥IEEE Third International Conference on Measuring Technology and Mechatronics Automation. Piscataway, NJ, USA: IEEE, 2011: 633-636.
[16] ALEYAASIN M, WHALLEY R, EBRAHIMI M. Error correction in hydrostatic spindles by optimal bearing tuning [J]. International Journal of Machine Tools and Manufacture, 2003, 17(6): 253-262.
[17] GAO Qiang, LU Lihua, CHEN Wanqun, et al. Optimal design of an annular thrust air bearing using parametric computational fluid dynamics model and genetic algorithms [J]. Proceedings of the Institution of Mechanical Engineers: Part J Journal of Engineering Tribology, 2018, 232(10): 1203-1214.
[18] 周帅. 空气静压止推轴承微尺度特性及其控制策略研究 [D]. 北京: 北京工业大学, 2016: 59-68.
[19] YOSHIMOTO S, KOHNO K. Static dynamic characteristics of aerostatic circular porous thrust bearings(effect of the shape of the air supply area)[J]. Journal of Tribology, 2000, 123: 501-508.
[20] WANG N, CHANG Y Z. Application of the genetic algorithm to the multi-objective optimization of air bearings [J]. Tribology Letters, 2004, 17(2): 119-128.
[21] HIRANI H, SUH N P. Journal bearing design using multiobjective genetic algorithm and axiomatic design approaches [J]. Tribology International, 2005, 38(5): 481-491.
[本刊相关文献链接]
任佟,陈东菊,李彦生,等.气体轴承的动态特性分析及实验研究.2019,53(8):68-75.[doi:10.7652/xjtuxb201908009]
章云,孙虎,胡振邦,等.高速主轴不平衡振动行为分析与抑制策略.2019,53(5):24-29.[doi:10.7652/xjtuxb201905004]
达琦,袁奇,李浦.燃气轮机拉杆转子非线性动力学特性研究.2019,53(5):43-51.[doi:10.7652/xjtuxb201905007]
孙志超,陶涛,黄晓勇,等.车床主轴与进给轴耦合热误差建模及补偿研究.2015,49(7):105-112.[doi:10.7652/xjtuxb 201507018]
李特,芮执元,雷春丽,等.离心力影响下的高速主轴-拉杆系统动态特性.2015,49(3):104-112.[doi:10.7652/xjtuxb2015 03017]
易均,刘恒,刘意,等.歪斜安装对组配轴承转子系统动力学特性影响.2014,48(9):107-111.[doi:10.7652/xjtuxb201409 018]

备注/Memo

备注/Memo:
收稿日期: 2019-11-20。作者简介: 陈东菊(1980—),女,教授,博士生导师。基金项目: 国家自然科学基金资助项目(51875005,51475010)。
更新日期/Last Update: 2020-06-10