[1]林伟,孙殿柱,李延瑞,等.形貌约束的多视角点云分阶配准方法[J].西安交通大学学报,2020,54(06):075-81.[doi:10.7652/xjtuxb202006010]
 LIN Wei,SUN Dianzhu,LI Yanrui,et al.A Hierarchical Registration Method of Multiview Point Clouds with Shape Constraints[J].Journal of Xi'an Jiaotong University,2020,54(06):075-81.[doi:10.7652/xjtuxb202006010]
点击复制

形貌约束的多视角点云分阶配准方法
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第06期
页码:
075-81
栏目:
出版日期:
2020-06-10

文章信息/Info

Title:
A Hierarchical Registration Method of Multiview Point Clouds with Shape Constraints
文章编号:
0253-987X(2020)06-0075-07
作者:
林伟1 孙殿柱1 李延瑞2 沈江华1
1.山东理工大学机械工程学院, 255049, 山东淄博; 2.西安交通大学机械工程学院, 710049, 西安
Author(s):
LIN Wei1 SUN Dianzhu1 LI Yanrui2 SHEN Jianghua1
1. College of Mechanical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China; 2. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
关键词:
平坦形貌 递归分割 形貌多分辨率模型 分阶配准
Keywords:
smooth shape recursive segmentation shape multiresolution model
分类号:
TP391.7
DOI:
10.7652/xjtuxb202006010
文献标志码:
A
摘要:
为提高大数据量多视角点云的配准效率,提出一种基于多分辨率模型的多视角点云分阶配准方法。首先根据平坦形貌约束条件对点云进行递归分割,提取所得割集的核心点作为特征点构造多分辨率模型,然后采用迭代最近点算法基于该模型上层数据求解多视角点云的初始变换矩阵,将其作用于模型后逐级求解下层数据的变换矩阵,最终将复合变换矩阵同步作用于原多视角点云,实现原多视角点云的精确配准。实验结果表明,该分阶配准方法可有效缓解点云单一简化结果导致的配准精度与效率之间的矛盾,在显著降低点云规模的前提下实现原始点云精确配准; 当点云规模达106级别时,与加权尺度迭代最近点(WSICP)算法相比,该方法的计算效率提高约2.5倍。
Abstract:
A method for hierarchical registration of multiview point clouds based on multiresolution model is proposed to improve the registration efficiency of the multiview point clouds with large data volume. Firstly, the point clouds are recursively segmented according to the constraints of smoothness, and the core points of the subsets are extracted as feature points to construct a multiresolution model. Then, the iterative nearest point algorithm is used to solve the initial transformation matrix of multiview point clouds based on the upper data of the model, which is applied to the model to solve the transformation matrix of the lower data step by step. The complex transformation matrix is synchronously applied to the original multiview point clouds to achieve the accurate registration of the original multiview point clouds. Experimental results show that the hierarchical registration method effectively alleviates the contradiction between registration accuracy and efficiency caused by single simplification of point clouds, and achieves accurate registration of the original point clouds on the premise of significantly reducing the scale of the point clouds. When the scale of point clouds reaches million level, the efficiency of the proposed algorithm is about 2.5 times higher than that of the weighted scaled iterative closest point algorithm.

参考文献/References:

[1] AL-MANASIR K, FRASER C S, COMMISSION V W. Automatic registration of terrestrial laser scanner data via imagery [C]∥ 2006 ISPRS Commission V Symposium on Image Engineering and Visicon Metrology. Vienna, Austria: ISPRS, 2006: 26-31.
[2] 龙玺, 钟约先, 李仁举, 等. 结构光三维扫描测量的三维拼接技术 [J]. 清华大学学报(自然科学版), 2002, 42(4): 477-480.
LONG Xi, ZHONG Yuexian, LI Renju, et al. 3-D surface integration in structured light 3-D scanning [J]. Journal of Tsinghua University(Science and Technology), 2002, 42(4): 477-480.
[3] 罗先波, 钟约先, 李仁举. 三维扫描系统中的数据配准技术 [J]. 清华大学学报(自然科学版), 2004, 44(8): 1104-1106.
LUO Xianbo, ZHONG Yuexian, LI Renju. Data registration in 3-D scanning systems [J]. Journal of Tsinghua University(Science and Technology), 2004, 44(8): 1104-1106.
[4] BESL P J. A method for registration 3-D shapes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 193-200.
[5] XU Y X, DU C, LI J, et al. WSICP: weighted scaled iterative closest point algorithm for point set registration [J]. ACM International Conference Proceeding Series, 2019, 19(6): 34-38.
[6] PARRA B á, CHIN T J. Guaranteed outlier removal for point cloud registration with correspondences [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 20(40): 2868-2882.
[7] YU Chanki, JU D Y. A maximum feasible subsystem for globally optimal 3D point cloud registration [J]. Sensors(Switzerland), 2018, 18(2): 544-563.
[8] 王育坚, 吴明明, 高倩. 基于保局PCA的三维点云配准算法 [J]. 光学技术, 2018, 44(5): 562-568.
WANG Yujian, WU Mingming, GAO Qian. 3D point cloud registration algorithm based on locality preserving PCA [J]. Acta Optica Sinica, 2018, 44(5): 562-568.
[9] 孙殿柱, 郭洪帅, 李延瑞, 等. 基于局部泊松曲面重建的点云刚性配准方法 [J]. 机械工程学报, 2018, 54(15): 141-149.
SUN Dianzhu, GUO Hongshuai, LI Yanrui, et al. A method of rigid registration based on Poisson reconstruction of local sample points [J]. Journal of Mechanical Engineering, 2018, 54(15): 141-149.
[10] ADIL M, BAGIROV J U, DEAN W. Fast modified global k-means algorithm for incremental cluster construction [J]. Pattern Recognition, 2011, 44(4): 866-876.
[11] TIPPING M E, BISHOP C M. Probabilistic principal component analysis [J]. Journal of the Royal Statistical Society: Series B Statistical Methodology, 1999, 61(3): 611-622.
[12] HUIZINGA W, POOT D H J, GUYADER J M, et al. PCA-based groupwise image registration for quantitative MRI [J]. Medical Image Analysis, 2016, 29: 65-78.
[13] ELSEBERG J, BORRMANN D, NUCHTER A. One billion points in the cloud: an octree for efficient processing of 3D laser scans [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 76(1): 76-88.
[14] GAO X F, SHEN H X, DANIELE P. Feature preserving octree-based hexahedral meshing [J]. Computer Graphics Forum, 2019, 38(5): 135-149.
[15] 孙殿柱, 王超, 刘华东, 等. 基于三角Bézier曲面平刀环切粗加工刀轨生成算法 [J]. 计算机集成制造系统, 2012, 18(10): 2191-2195.
SUN Dianzhu, WANG Chao, LIU Huadong, et al. Generating algorithm of contour-parallel rough tool-path for triangular Bézier surface [J], Computer Integrated Manufacturing Systems, 2012, 18(10): 2191-2195.
[16] ESAM A N, AZZAM S, MOHAMMAD A. SOLD: a node-splitting algorithm for R-tree based on objects’ locations distribution [J]. Journal of Information Science, 2019, 45(2): 169-195.
[17] 李仁忠, 杨曼, 刘阳阳. 一种散乱点云的均匀精简算法 [J]. 光学学报, 2017(7): 97-105.
LI Renzhong, YANG Man, LIU Yangyang. An uniform simplification algorithm for scattered point cloud [J]. Acta Optica Sinica, 2017(7): 97-105.
[18] 梁增凯, 孙殿柱, 薄志成, 等. 样点邻域同构曲面约束的散乱点云曲率估计 [J]. 西安交通大学学报, 2018, 52(12): 50-56.
LIANG Zengkai, SUN Dianzhu, BO Zhicheng, et al. Curvature estimation for unorganized point cloud based on local isomorphic surface [J]. Journal of Xi’an Jiaotong University, 2018, 52(12): 50-56.
[19] 周煜, 张万兵, 杜发荣, 等. 散乱点云数据的曲率精简算法 [J].北京理工大学学报,2010,30(7):785-789.
ZHOU Yu, ZHANG Wanbing, DU Farong, et al. Algorithm for reduction of scattered point cloud data based on curvature [J]. Transactions of Beijing Institute of Technology, 2010, 30(7): 785-789.
[20] DONOSO F A, AUSTIN K J, MCAREE P R. Three new iterative closest point variant-methods that improve scan matching for surface mining terrain [J]. Robotics and Autonomous Systems,2017,95:117-128.

备注/Memo

备注/Memo:
收稿日期: 2019-12-02。作者简介: 林伟(1994—),男,硕士生; 孙殿柱(通信作者),男,教授,博士生导师。基金项目: 国家自然科学基金资助项目(51575326)。
更新日期/Last Update: 2020-06-10