[1]李玉峰,梁志远,邓世丰,等.高温CO2环境下耐热合金HR6W和740H的腐蚀行为[J].西安交通大学学报,2020,54(05):179-188.[doi:10.7652/xjtuxb202005023]
 LI Yufeng,LIANG Zhiyuan,DENG Shifeng,et al.Corrosion Behavior of Heat Resistant Alloys HR6W and 740H in High-Temperature Carbon Dioxide Environment[J].Journal of Xi'an Jiaotong University,2020,54(05):179-188.[doi:10.7652/xjtuxb202005023]
点击复制

高温CO2环境下耐热合金HR6W和740H的腐蚀行为
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第05期
页码:
179-188
栏目:
出版日期:
2020-05-10

文章信息/Info

Title:
Corrosion Behavior of Heat Resistant Alloys HR6W and 740H in High-Temperature Carbon Dioxide Environment
文章编号:
0253-987X(2020)05-0179-10
作者:
李玉峰 梁志远 邓世丰 桂雍 邵怀爽 赵钦新
西安交通大学热流科学与工程教育部重点实验室, 710049, 西安
Author(s):
LI Yufeng LIANG Zhiyuan DENG Shifeng GUI Yong SHAO Huaishuang ZHAO Qinxin
MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
关键词:
耐热合金 二氧化碳 腐蚀行为
Keywords:
heat-resistant alloy carbon dioxide corrosion behavior
分类号:
TG178
DOI:
10.7652/xjtuxb202005023
文献标志码:
A
摘要:
为了研究高温CO2环境下耐热合金HR6W和740H的腐蚀行为,开展了800、900、1 000 ℃CO2环境下的耐热合金腐蚀实验,并进行了腐蚀产物的微观表征。利用分析天平获取耐热合金腐蚀前后的质量变化,并计算其激活能; 应用激光拉曼光谱仪和X射线衍射仪对合金表面腐蚀产物进行表征分析; 利用扫描电子显微镜等设备观察样品的微观形貌,并分析腐蚀产物成分与分布。实验结果表明:两种耐热合金在高温CO2环境下的腐蚀动力曲线符合抛物线规律,HR6W和740H的激活能分别为-256.59、-293.35 kJ/mol; HR6W表面氧化产物为致密均匀的Cr2O3氧化层和MnCr2O4氧化层; 740H存在内氧化现象,外层氧化产物为TiO2氧化层和Cr2O3氧化层,内层氧化产物为非均匀的Al2O3及TiO2氧化物; 两种合金均无明显碳化现象; 对比腐蚀增质和氧化层厚度发现,HR6W的耐腐蚀性能优于740H的,这是由于740H中Ti元素的外扩散破坏了Cr2O3和Ti、Al元素的内氧化行为而造成的。
Abstract:
The corrosion behaviors of heat-resistant alloys HR6W and 740H in carbon dioxide at 800, 900, 1 000 ℃ were investigated. The weight gain of the alloys was obtained by the analytical balance and the activation energy was evaluated. Raman spectrometer and X-ray diffraction were used to characterize the surface of the alloys. Scanning electron microscope and other equipment were used to observe the micro-surface morphology of the alloys. The results show that the corrosion kinetics of the alloys obeys a parabolic law. The activation energy of HR6W and 740H gets -256.59 kJ/mol and -293.35 kJ/mol, respectively. Dense oxide films of Cr2O3 and MnCr2O4 are formed on the surface of HR6W. In addition to the surface oxide films of TiO2 and Cr2O3, internal oxidation occurs on the surface of 740H. The outer layers consist of Cr2O3 and TiO2, the internal corrosion products are non-uniform Al2O3 and TiO2. In the high-temperature CO2 atmosphere, no carbonization is observed in the alloys. Analyzing the results of mass change and oxide layer thickness, it is found that the corrosion resistance of HR6W is better than that of 740H, which is attributed to the outward diffusion of Ti through Cr2O3 weakening the internal oxidation of Ti and Al.

参考文献/References:

[1] 梁志远, 于淼, 桂雍, 等. 高温CO2环境中耐热合金腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2018, 30(3): 237-243.
LIANG Zhiyuan, YU Miao, GUI Yong, et al. High temperature corrosion of heat-resistant materials in carbon dioxide environment [J]. Corrosion Science and Protection Technology, 2018, 30(3): 237-243.
[2] 鲁金涛, 赵新宝, 袁勇, 等. 超临界二氧化碳布雷顿循环系统中材料的腐蚀行为 [J]. 中国电机工程学报, 2016, 36(3): 739-745.
LU Jintao, ZHAO Xinbao, YUAN Yong, et al. Corrosion behavior of alloys in supercritical CO2 Brayton cycle power generation [J]. Proceedings of CSEE, 2016, 36(3): 739-745.
[3] 梁志远, 桂雍, 赵钦新. 超临界二氧化碳条件下3种典型耐热钢腐蚀特性实验研究 [J]. 西安交通大学学报, 2019, 53(7): 23-29.
LIANG Zhiyuan, GUI Yong, ZHAO Qinxin. High-temperature corrosion behavior of three heat-resistant steels under supercritical dioxide condition [J]. Journal of Xi’an Jiaotong University, 2019, 53(7): 23-29.
[4] ALLAM R, MARTIN S, FORREST B, et al. Demonstration of the Allam cycle: an update on the development status of a high efficiency supercritical carbon dioxide power process employing full carbon capture [J]. Energy Proceedia, 2017, 114: 5948-5966.
[5] BUHRE B J P, ELLIOTT L K, SHENG C D, et al Oxy-fuel combustion technology for coal-fired power generation [J]. Progress in Energy Combust, 2005, 31(4): 283-307.
[6] BORDENET B. Influence of novel cycle concepts on the high-temperature corrosion of power plants [J]. Materials and Corrosion, 2008, 59(5): 361-366.
[7] MARTIN W R, WEIR J R. Influence of chromium content on carburization of chromium-nickel iron alloys in carbon dioxide [J]. Journal of Nuclear Materials, 1965, 16(1): 19-24.
[8] MCCOY H E. Type 304 stainless steel vs flowing CO2 at atmospheric pressure and 1100-1800F [J]. Corrosion, 1965, 21(3): 84-94.
[9] NGUYEN T D, XIE Y, DING S, et al. Oxidation behavior of Ni-Cr alloys in CO2 at 700 ℃ [J]. Oxidation of Metals, 2017, 87(5/6): 605-616.
[10] NGUYEN T D, ZHANG J, YOUNG D J. Effects of Si, Al and Ti on corrosion of Ni-20Cr and Ni-30Cr alloys in Ar-20 CO2 at 700 ℃ [J]. Corrosion Science, 2018, 130: 161-176.
[11] PINT B A, BRESE R G, KEISER J R. Effect of pressure on supercritical CO2 compatibility of structural alloys at 750 ℃ [J]. Materials and Corrosion, 2017, 68(2): 151-158.
[12] XIE Y, ZHANG J, YOUNG D J, et al. Temperature effect on oxidation behavior of Ni-Cr alloys in CO2 gas atmosphere [J]. Journal of the Electrochemical Society, 2017, 164(6): 285-293.
[13] XIE Y, NGUYEN T D, ZHANG J, et al. Corrosion behaviour of Ni-Cr alloys in wet CO2 atmosphere at 700 and 800 ℃ [J]. Corrosion Science, 2019, 146: 28-43.
[14] JIANG H, DONG J, ZHANG M, et al. Oxidation behavior and mechanism of inconel 740H alloy for advanced ultra-supercritical power plants between 1 050 and 1 170 ℃ [J]. Oxidation of Metals, 2015, 84(1/2): 61-72.
[15] 谢奕心, 程晓农, 徐桂芳, 等. 高温合金Inconel 740H在空气和水蒸气环境中的氧化行为 [J]. 热加工工艺, 2018, 47(14): 55-59.
XIE Yixin, CHENG Xiaonong, XU Guifang, et al. Oxidation behavior of high temperature alloy Inconel 740H in air and water vapor environment [J]. Hot Working Technology, 2917, 48(14): 55-59.
[16] 鲁金涛, 杨珍, 徐松乾, 等. Inconel 740H合金在纯水蒸气环境中的高温氧化行为 [J]. 机械工程材料, 2015, 39(10): 37-41.
LU Jintao, YANG Zhen, XU Songqian, et al. High temperature oxidation behavior of Inconel alloy 740H in pure steam [J]. Materials for Mechanical Engineering, 2015, 39(10): 37-41.
[17] LIANG Zhiyuan, YU Miao, GUI Yong, et al. Corrosion behavior of heat-resistant materials in high-temperature carbon dioxide environment [J]. The Journal of the Minerals, Metals & Materials Society, 2018, 70(8): 1464-1470.
[18] LIANG Zhiyuan, GUI Yong, WANG Yungang, et al. Corrosion performance of heat-resisting steels and alloys in supercritical carbon dioxide at 650 ℃ and 15 MPa [J]. Energy, 2019, 175: 345-352.
[19] OLEKSAK R P, TYLCZAK J H. High temperature oxidation of Ni alloys in CO2 containing impurities [J]. Corrosion Science, 2019, 157: 20-30.
[20] 于淼, 梁志远, 桂雍, 等. 4种先进超超临界电站锅炉用高温合金高温腐蚀性能实验研究 [J]. 表面技术, 2018, 47(6): 8-16.
YU Miao, LIANG Zhiyuan, GUI Yong, et al. Experimental study on high temperature resistance in simulated coal-ash environment of four superalloys for AUSC power plant boilers [J]. Surface Technology, 2018, 47(6): 8-16.
[21] 伯格斯, 迈尔, 佩蒂特. 金属高温氧化导论: 第2版 [M]. 辛丽, 王文, 译. 北京: 高等教育出版社, 2010: 44-63.
[22] WRIGHT I G, DOOLEY R B. A review of the oxidation behaviour of structural alloys in steam [J]. International Materials Reviews, 2013, 55(3): 129-167.
[23] CAO Guangming, LIU Xiaojiang, SUN Bin, et al. Morphology of oxide scale and oxidation kinetics of low carbon stell [J]. Journal of Iron and Steel Research, 2014, 21(3): 335-341.
[24] GUI Yong, LIANG Zhiyuan, ZHAO Qinxin, et al. Corrosion and carburization behavior of heat-resistant steels in a high-temperature supercritical carbon dioxide environment [J]. Oxidation of Metals, 2019, 92(1/2): 123-136.
[25] MAHAFFEY J, ADAM D, BRITTAN A, et al. Corrosion of alloy Haynes 230 in high temperature supercritical carbon dioxide with oxygen impurity additions [J]. Oxidation of Metals, 2016, 86(5/6): 567-580.
[26] LIANG Zhiyuan, ZHAO Qinxin. High temperature oxidation of Fe-Ni-base alloy HR120 and Ni-base alloy HAYNES 282 in steam [J]. Materials at High Temperatures, 2018, 36(1): 87-96.
[本刊相关文献链接]
曹志杰,马晓波.Mo部分替代Ti对V40Ti50Fe10合金储氢性能的影响.2019,53(9):137-144.[doi:10.7652/xjtuxb201909 018]
万明佳,俞浪浪,易艳良,等.淬火方式对高硼合金组织及力学性能的影响.2019,53(8):90-97.[doi:10.7652/xjtuxb 201908012]
成小乐,周思君,符寒光,等.置氢改性钛合金扩散连接机理研究.2019,53(3):111-116.[doi:10.7652/xjtuxb201903016]
鲁中良,曹继伟,冯朋帅,等.凝胶注模和反应熔渗SiC陶瓷基零件素坯缺陷控制及高温力学性能研究.2019,53(2):63-69.[doi:10.7652/xjtuxb201902009]
丁欣恺,孙琨,张猛,等.利用第一性原理计算方法对NbMoTaWVx高熵合金的研究.2018,52(11):86-92.[doi:10.7652/xjtuxb201811013]
路昭,余小玲,张立玉,等.锂电池组高温节点空气冷却方案的数值模拟.2018,52(7):25-31.[doi:10.7652/xjtuxb2018 07004]
金波,李明佳,徐阳,等.双层填充床储热器储热性能实验研究.2018,52(7):80-86.[doi:10.7652/xjtuxb201807012]
张俊,陈卫华,任树伟,等.高温环境下梯度多孔金属纤维的吸声性能及优化设计.2018,52(1):143-150.[doi:10.7652/xjtuxb201801021]
徐勇勇,孙琨,邹增琪,等.选区激光熔化制备Al0.5CoCrFeNi高熵合金的工艺参数及组织性能.2018,52(1):151-157.[doi:10.7652/xjtuxb201801022]
李沁伦,王璐凯,刘银河,等.300 MW一次再热亚临界燃煤发电站系统改进研究.2018,52(9):54-63.[doi:10.7652/xjtuxb201809007]
李雪芝,周建平,王恪典,等.GH4169镍基合金短电弧加工温度场数值模拟.2018,52(8):30-36.[doi:10.7652/xjtuxb 201808005]
张东亚,高峰,王建磊,等.仿生含油叠层复合材料的高温摩擦学性能.2017,51(5):69-74.[doi:10.7652/xjtuxb201705 011]
裴勇,何雅玲.H型翅片管换热器烟气低温腐蚀影响因素实验研究.2017,51(3):54-61.[doi:10.7652/xjtuxb201703010]

相似文献/References:

[1]李青,余云松,姜钧,等.一种改进的二氧化碳吸收减排法[J].西安交通大学学报,2008,42(11):1413.[doi:10.7652/xjtuxb200811021]
 LI Qing,YU Yunsong,JIANG Jun,et al.Improved CO2 Capture Method by Absorption[J].Journal of Xi'an Jiaotong University,2008,42(05):1413.[doi:10.7652/xjtuxb200811021]
[2]方健珉,王静,孙西峰,等.回热器对电动汽车跨临界CO2制冷系统影响的实验研究[J].西安交通大学学报,2020,54(06):155.[doi:10.7652/xjtuxb202006020]
 FANG Jianmin,WANG Jing,SUN Xifeng,et al.Effect of Internal Heat Exchanger on Transcritical CO2 Refrigeration System of Electric Vehicle[J].Journal of Xi'an Jiaotong University,2020,54(05):155.[doi:10.7652/xjtuxb202006020]

备注/Memo

备注/Memo:
收稿日期: 2019-12-13。作者简介: 李玉峰(1995—),男,硕士生; 梁志远(通信作者),男,副教授。基金项目: 国家自然科学基金资助项目(51808166); 陕西省自然科学基础研究计划资助项目(2019JQ-604); 中央高校基本科研业务费专项资金资助项目(Z201806052)。
更新日期/Last Update: 2020-05-10