[1]李健武,符阳春,张志伟,等.进口雷诺数和湿空气含湿量对冲击冷却流动和传热特性的影响[J].西安交通大学学报,2020,54(05):170-178.[doi:10.7652/xjtuxb202005022]
 LI Jianwu,FU Yangchun,ZHANG Zhiwei,et al.Influences of Inlet Reynolds Number and Humidity Ratio of Moist Air on Flow and Heat Transfer Characteristics of Impingement Cooling[J].Journal of Xi'an Jiaotong University,2020,54(05):170-178.[doi:10.7652/xjtuxb202005022]
点击复制

进口雷诺数和湿空气含湿量对冲击冷却流动和传热特性的影响
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第05期
页码:
170-178
栏目:
出版日期:
2020-05-10

文章信息/Info

Title:
Influences of Inlet Reynolds Number and Humidity Ratio of Moist Air on Flow and Heat Transfer Characteristics of Impingement Cooling
文章编号:
0253-987X(2020)05-0170-09
作者:
李健武 符阳春 张志伟 廖贵鄂 李亮
西安交通大学叶轮机械研究所, 710049, 西安
Author(s):
LI Jianwu FU Yangchun ZHANG Zhiwei LIAO Gui’e LI Liang
Institute of Turbomachinery, Xi’an Jiaotong University, Xi’an 710049, China
关键词:
燃气轮机 冲击冷却 湿空气 雷诺数 含湿量
Keywords:
gas turbine impingement cooling moist air Reynolds number humidity ratio
分类号:
TK474.7
DOI:
10.7652/xjtuxb202005022
文献标志码:
A
摘要:
为进一步探索湿化燃气轮机透平循环的叶片前缘冷却情况,分析了进口雷诺数和湿空气含湿量对冲击冷却流动和传热特性的影响。建立了带有进气室、单排圆形冲击孔和冲击冷却腔的冲击冷却模型,利用ANSYS CFX软件数值研究了进口雷诺数和湿空气含湿量对冲击冷却流动和传热特性的影响,总结了湿空气冲击冷却的流动和传热规律。在此基础上,对努塞尔数与冲击孔雷诺数和湿空气普朗特数进行关联式拟合,得到了湿空气冲击冷却的传热关联式。研究结果表明:冲击冷却的冷却性能随着进口雷诺数和含湿量的增大而提高; 冲击射流冲击至靶面后沿着壁面向四周流动,并在冲击腔内形成复杂的流动涡结构; 增大进口雷诺数能够显著增大冷气的涡量,提高换热靶面的换热强度; 相同进口雷诺数下,干空气冷却和湿空气冷却换热靶面努塞尔数分布规律一致,但数值上湿空气冷却的略高于干空气冷却的,并且二者差异随着进口雷诺数的增大而增大; 冷却工质的质量流量随着含湿量的增大而减小,换热靶面努塞尔数随着含湿量的增大而增大; 拟合的传热关联式与数值计算的结果吻合较好,能够较好地预测湿空气冲击冷却的换热系数。
Abstract:
To investigate the cooling of the blade leading edge of a humidified gas turbine, the effects of inlet Reynolds number and humidity ratio of moist air on the impingement cooling of flow and heat transfer are analyzed. An impingement cooling model with an inlet chamber, a row of circular impingement holes and an impingement cooling chamber is established. The ANSYS CFX software is used to numerically investigate the influences of inlet Reynolds number and humidity ratio of moist air on flow and heat transfer characteristics of impingement cooling, and the properties of the flow and heat transfer are summarized. Following the numerical results, the Nusselt number is correlated with the Reynolds number of impingement holes and the Prandtl number to obtain the heat transfer correlation of the moist air impingement cooling. The results show that the cooling performance of impingement cooling improves with the increasing Reynolds number and humidity ratio. After the impingement jet impacts the target surface, the coolant flows along the wall surface and forms a complex vortex structure in the impingement cooling chamber. When the inlet Reynolds number increases, the heat transfer of the target surface is enhanced due to an increasing coolant vorticity. The Nu distributions of the target surface for dry air cooling and moist air cooling have little differences with the same inlet Reynolds number, but the value of Nu for moist air cooling is slightly higher than that for dry air cooling and the difference increase with the increasing inlet Reynolds number. The coolant mass flow decreases with the increasing humidity ratio, while the Nu of the target surface increases with the increasing humidity ratio. The heat transfer correlation coincides well with the numerical results and can be used to predict the heat transfer coefficient of moist air impingement cooling.

参考文献/References:

[1] 翁史烈, 王永泓, 宋华芬, 等. 现代燃气轮机装置 [M]. 上海: 上海交通大学出版社, 2015: 1-10.
[2] RYDSTRAND M C, WESTERMARK M O, BARTLETT M A. An analysis of the efficiency and economy of humidified gas turbines in district heating applications [J]. Energy, 2004, 29(12/13/14/15): 1945-1961.
[3] JONSSON M, YAN J. Humidified gas turbines-a review of proposed and implemented cycles [J]. Energy, 2005, 30(7): 1013-1078.
[4] HERRMANN S, KRETZSCHMAR H J, GATLEY D. Thermodynamic properties of real moist air, dry air, steam, water, and ice [J]. HVAC & R Research, 15(5): 961-986.
[5] CHUPP R E, HELMS H E, MCFADDEN P W. Evaluation of internal heat transfer coefficients for impingement-cooled turbine airfoils [J]. Journal of Aircraft, 1969, 6(3): 203-208.
[6] BUNKER R S, METZGER D E. Local heat transfer in internally cooled turbine airfoil leading edge regions: part I Impingement cooling without film coolant extraction [J]. Journal of Turbomachinery, 1990, 112(3): 451-458.
[7] CHOI M, HAN S Y, YANG G, et al. Measurements of impinging jet flow and heat transfer on a semi-circular concave surface [J]. International Journal of Heat & Mass Transfer, 2000, 43(10): 1811-1822.
[8] TASLIM M E, BAKHTARI K, LIU H. Experimental and numerical investigation of impingement on a rib-roughened leading-edge wall [J]. Journal of Turbomachinery, 2003, 125(4): 682-691.
[9] KUMAR B V N R, PRASAD B V S S S. Computational flow and heat transfer of a row of circular jets impinging on a concave surface [J]. Heat & Mass Transfer, 2008, 44(6): 667-678.
[10] ZUCKERMAN N, LIOR N. Impingement heat transfer: correlations and numerical modeling [J]. Heat Transfer, 2005, 127(5): 544-552.
[11] GUO T, WANG T, GADDIS J L. Mist/steam cooling in a heated horizontal tube: part 1 Experimental system [J]. Journal of Turbomachinery, 2000, 122(2): 366-374.
[12] GUO T, WANG T, GADDIS J L. Mist/steam cooling in a heated horizontal tube: part 2 Results and modeling [J]. Journal of Turbomachinery, 2000, 122(2): 366-374.
[13] LI X, GADDIS J, WANG T. Mist/steam heat transfer in confined slot jet impingement [J]. Journal of Turbomachinery, 2001, 123(1): 161-167.
[14] LI X, GADDIS J L, WANG T. Modeling of heat transfer in a mist/steam impinging jet [J]. Journal of Heat Transfer, 2001, 123(6): 1086-1092.
[15] LI X, GADDIS J L, WANG T. Mist/steam cooling by a row of impinging jets [J]. International Journal of Heat & Mass Transfer, 2003, 46(12): 2279-2290.
[16] WANG T, GADDIS J L, LI X. Mist/steam heat transfer of multiple rows of impinging jets [J]. International Journal of Heat & Mass Transfer, 2005, 48(25): 5179-5191.
[17] PAKHOMOV M A, TEREKHOV V I. Enhancement of an impingement heat transfer between turbulent mist jet and flat surface [J]. International Journal of Heat & Mass Transfer, 2010, 53(15/16): 3156-3165.
[18] 谭晓茗, 李业芳, 张靖周. 含湿气流单缝冲击冷却数值模拟 [J]. 航空动力学报, 2013, 28(1): 129-135.
TAN Xiaoming, LI Yefang, ZHANG Jingzhou. Numerical simulation of mist/air cooling in a single slot jet impingement [J]. Journal of Aerospace Power, 2013, 28(1): 129-135.
[19] 姜玉廷, 郑群, 罗铭聪, 等. 叶片前缘两相流冲击冷却的耦合数值模拟 [J]. 推进技术, 2015, 36(3): 443-449.
JIANG Yuting, ZHENG Qun, LUO Mingcong, et al. Conjugate simulation of two phase flow impingement cooling on blade leading edge [J]. Journal of Propulsion Technology, 2015, 36(3): 443-449.
[20] SUTHERLAND W. The viscosity of gases and molecular force [J]. Philosophical Magazine: Series 5, 2009, 36: 507-531.

相似文献/References:

[1]孙皓,薛志恒,李军,等.低雷诺数对透平叶片间隙泄漏流动影响的研究[J].西安交通大学学报,2010,44(03):011.[doi:10.7652/xjtuxb201003003]
 SUN Hao,XUE Zhiheng,LI Jun,et al.Effects of Low Reynolds Number on Turbine Blade Tip Leakage Flow[J].Journal of Xi'an Jiaotong University,2010,44(05):011.[doi:10.7652/xjtuxb201003003]
[2]史晓军,王维,高建民,等.透平叶片双工质冷却特性的实验研究[J].西安交通大学学报,2013,47(10):081.[doi:10.7652/xjtuxb201310014]
 SHI Xiaojun,WANG Wei,GAO Jianmin,et al.Experimental Investigation on Cooling Performance of Binary Cooling Gas Turbine Vane[J].Journal of Xi'an Jiaotong University,2013,47(05):081.[doi:10.7652/xjtuxb201310014]
[3]史晓军,税琳棋,高建民,等.蒸汽冷却带肋矩形通道传热和压降实验关联式[J].西安交通大学学报,2013,47(11):001.[doi:10.7652/xjtuxb201311001]
 SHI Xiaojun,SHUI Linqi,GAO Jianmin,et al.Heat Transfer and Pressure Drop Correlations for Rectangular Channels with Ribs[J].Journal of Xi'an Jiaotong University,2013,47(05):001.[doi:10.7652/xjtuxb201311001]
[4]周子杰,王新军,费昕阳.燃机透平静叶尾缘柱肋通道内的汽雾/空气冷却流动与换热特性数值研究[J].西安交通大学学报,2016,50(11):021.[doi:10.7652/xjtuxb201611004]
 ZHOU Zijie,WANG Xinjun,FEI Xinyang.Numerical Investigation for Flow and Heat Transfer Characteristics of Air and Air/Mist Cooling in Gas Turbine Stator Trail Edge Path[J].Journal of Xi'an Jiaotong University,2016,50(05):021.[doi:10.7652/xjtuxb201611004]
[5]叶明亮,黄琰,晏鑫,等.隔板位置对凹槽叶顶传热和冷却性能的影响[J].西安交通大学学报,2018,52(03):055.[doi:10.7652/xjtuxb201803008]
 YE Mingliang,HUANG Yan,YAN Xin,et al.Effect of Rib Location on the Heat Transfer and Cooling Characteristics of Squealer Tip[J].Journal of Xi'an Jiaotong University,2018,52(05):055.[doi:10.7652/xjtuxb201803008]
[6]吴凡,杜长河,王杰枫,等.周向喷嘴数对旋流冷却流动传热特性的影响[J].西安交通大学学报,2018,52(07):094.[doi:10.7652/xjtuxb201807014]
 WU Fan,DU Changhe,WANG Jiefeng,et al.Influence of the Number of Circumferential Nozzles on the Flow and Heat Transfer Characteristics of Swirl Cooling[J].Journal of Xi'an Jiaotong University,2018,52(05):094.[doi:10.7652/xjtuxb201807014]
[7]卓明,杨利花,夏凯,等.考虑热场的重型燃气轮机组合转子盘间接触应力分析[J].西安交通大学学报,2018,52(11):058.[doi:10.7652/xjtuxb201811009]
 ZHUO Ming,YANG Lihua,XIA Kai,et al.Contact Stress Analysis of Combined Rotor in HeavyDuty Gas Turbine Considering Thermal Effect[J].Journal of Xi'an Jiaotong University,2018,52(05):058.[doi:10.7652/xjtuxb201811009]
[8]董雨轩,李志刚,李军.预旋对燃气涡轮排气蜗壳气动性能影响的数值研究[J].西安交通大学学报,2020,54(01):116.[doi:10.7652/xjtuxb202001015]
 DONG Yuxuan,LI Zhigang,LI Jun.Effect of Preswirl on the Aerodynamic Performance of the Gas Turbine Exhaust Volutes[J].Journal of Xi'an Jiaotong University,2020,54(05):116.[doi:10.7652/xjtuxb202001015]

备注/Memo

备注/Memo:
收稿日期: 2019-11-20。作者简介: 李健武(1996—),男,硕士生; 李亮(通信作者),男,教授,博士生导师。基金项目: 国家科技重大专项资助项目(2017-I-0009-0010)。
更新日期/Last Update: 2020-05-10