[1]陈康,陈鹏飞,李文升,等.电沉积金属泡沫内的渗透流动特性[J].西安交通大学学报,2020,54(05):087-94.[doi:10.7652/xjtuxb202005012]
 CHEN Kang,CHEN Pengfei,LI Wengsheng,et al.Permeation Characteristics of Electrodeposited Metal Foam[J].Journal of Xi'an Jiaotong University,2020,54(05):087-94.[doi:10.7652/xjtuxb202005012]
点击复制

电沉积金属泡沫内的渗透流动特性
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第05期
页码:
087-94
栏目:
出版日期:
2020-05-10

文章信息/Info

Title:
Permeation Characteristics of Electrodeposited Metal Foam
文章编号:
0253-987X(2020)05-0087-08
作者:
陈康12 陈鹏飞2 李文升13 谢向东1 郭烈锦1 赵亮1 彭怀午2
1.西安交通大学动力工程多相流国家重点实验室, 710049, 西安; 2.中国电建集团西北勘测设计研究院有限公司太阳能利用工程技术研究所, 710065, 西安; 3.中国石油天然气集团公司管材研究所石油管材及装备材料服役行为与结构安全国家重点实验室, 710077, 西安
Author(s):
CHEN Kang12 CHEN Pengfei2 LI Wengsheng13 XIE Xiangdong1 GUO Liejin1 ZHAO Liang1 PENG Huaiwu2
1. State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China; 2. Institute of Solar Engineering Technology, PowerChina Northwest Engineering Corporation Limited, Xi’an 710065, China; 3. State Key Laborato
关键词:
金属泡沫 渗透率 惯性系数 孔胞结构
Keywords:
metal foam permeability inertia coefficient foam structure
分类号:
O359
DOI:
10.7652/xjtuxb202005012
文献标志码:
A
摘要:
为了探究电沉积法制备金属泡沫微观孔胞结构对渗透特性的内在作用机理,针对不同结构与材料的金属泡沫完成了空气渗透流动实验。采用基于正五边形宽骨架结构的正十二面体的金属泡沫孔胞模型,建立了金属泡沫半经验渗透模型; 分析了金属泡沫内流动阻力的变化规律,获得了包括孔隙率和孔密度等不同微观结构参数下金属泡沫内流体渗透特性。研究结果表明:小流速范围内,金属泡沫内流体流动为Darcy流态,受黏性作用影响; 大流速范围内,金属泡沫内流体流动为Forhheimer流态,受惯性作用影响。电沉积金属泡沫内阻力因子的常数项为0.099 5,较粉末烧结金属泡沫内阻力因子的常数项明显增大。提出了基于孔隙率与孔密度的金属泡沫水力直径修正计算模型,与正五边形宽骨架模型预测结果相比误差在±5%以内; 获得了单位长度压差的Darcy-Forhheimer型预测公式,预测值与实验值的最大误差在±15%以内,并提出了以孔隙率和水力直径为变量的金属泡沫渗透率K和惯性系数F的预测公式。
Abstract:
To explore the affecting mechanism of permeation characteristics of electrodeposited metal foam, experimental study was conducted for different foam structures and foam materials. Based on the fat pentagon-frame dodecahedron pore model, a semi-empirical permeation model of metal foam was developed. The variation of flow resistance in metal foam was analyzed, and the permeation characteristics of fluid in metal foam with different pore densities and porosities were obtained. The results show that the flow pattern of penetration is Darcy flow at small velocity, which is dominated by viscous effect, and the flow pattern is Forhheimer flow at large velocity, which is dominated by inertial effect. The constant term in the friction factor correlation of electrodeposited metal foam was 0.099 5, much larger than that of the constant of powder sintered metal foam. The modified model of hydraulic diameter was proposed with a maximum ±5% deviation. A new Darcy-Forhheimer correlation of differential pressure per unit length was proposed with a maximum ±15% deviation, and the permeability K and inertial coefficient F were predicted via porosity and hydraulic diameter to reflect the flow mechanism in metal foam.

参考文献/References:

[1] 陈康, 郭烈锦, 赵亮, 等. 包覆金属泡沫管束流动与传热特性实验研究 [J]. 工程热物理学报, 2016, 37(4): 770-774.
CHEN Kang, GUO Liejin, ZHAO Liang, et al. Experimental investigation of fluid flow and heat-transfer properties of metallic foam tube-bundle [J]. Journal of Engineering Thermophysics, 2016, 37(4): 770-774.
[2] XU Huijin, GONG Liang, ZHAO Changying, et al. Analytical considerations of local thermal non-equilibrium conditions for thermal transport in metal foams [J]. International Journal of Thermal Sciences, 2015, 95: 73-87.
[3] CHEN Kang, GUO Liejin, XIE Xiangdong, et al. Experimental investigation on enhanced thermal performance of staggered tube bundles wrapped with metallic foam [J]. International Journal of Heat and Mass Transfer, 2018, 122: 459-468.
[4] YANG Xiaohu, NIU Zhaoyang, BAI Qingsong, et al. Experimental study on the solidification process of fluid saturated in fin-foam composites for cold storage [J]. Applied Thermal Engineering, 2019, 161: 114-163.
[5] YANG Xiaohu, YU Jiabang, GUO Zengyu, et al. Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube [J]. Applied Energy, 2019, 239: 142-156.
[6] XU Huijin, ZHAO Changying, XU Zhiguo. Analytical considerations of slip flow and heat transfer through microfoams in mini/microchannels with asymmetric wall heat fluxes [J]. Applied Thermal Engineering, 2016, 93: 15-26.
[7] XU Huijin, ZHAO Changying, VAFAI K. Analysis of double slip model for a partially filled porous microchannel: an exact solution [J]. European Journal of Mechanics: B Fluids, 2018, 68: 1-9.
[8] XU Huijin. Thermal transport in microchannels partially filled with micro-porous media involving flow inertia, flow/thermal slips, thermal non-equilibrium and thermal asymmetry [J]. International Communications in Heat and Mass Transfer, 2020, 110: 104404.
[9] DUKHAN N, QUINONES-RAMOS P D, CRUZ-RUIZ E, et al. One-dimensional heat transfer analysis in open-cell 10-ppi metal foam [J]. International Journal of Heat and Mass Transfer, 2005, 48(25/26): 5112-5120.
[10] DU PLESSIS P, MONTILLET A, COMITI J, et al. Pressure drop prediction for flow through high porosity metallic foams [J]. Chemical Engineering Science, 1994, 49(21): 3545-3553.
[11] FOURIE J G, DU PLESSIS J P. Pressure drop modelling in cellular metallic foams [J]. Chemical Engineering Science, 2002, 57(14): 2781-2789.
[12] LU T, STONE H, ASHBY M. Heat transfer in open-cell metal foams [J]. Acta Materialia, 1998, 46(10): 3619-3635.
[13] CALMIDI V V, MAHAJAN R L. Forced convection in high porosity metal foams [J]. Journal of Heat Transfer, 2000, 122(3): 557-565.
[14] RODE S, MIDOUX N, LATIFI M A, et al. Hydrodynamics of liquid flow in packed beds: an experimental study using electrochemical shear rate sensors [J]. Chemical Engineering Science, 1994, 49(6): 889-900.
[15] DUKHAN N, BAAGˇUC ?, ?ZDEMIR M. Metal foam hydrodynamics: flow regimes from pre-Darcy to turbulent [J]. International Journal of Heat and Mass Transfer, 2014, 77: 114-123.
[16] PAEK J, KANG B, KIM S, et al. Effective thermal conductivity and permeability of aluminum foam materials1 [J]. International Journal of Thermophysics, 2000, 21(2): 453-464.
[17] BEAVERS G S, SPARROW E M. Non-Darcy flow through fibrous porous media [J]. Journal of Applied Mechanics, 1969, 36(4): 711-714.
[18] WANG Hui, GUO Liejin. Experimental investigation on pressure drop and heat transfer in metal foam filled tubes under convective boundary condition [J]. Chemical Engineering Science, 2016, 155: 438-448.
[19] ERGUN S. Fluid flow through packed columns [J]. Chem Eng Prog, 1952, 48(2): 89-94.
[20] DIETRICH B, SCHABEL W, KIND M, et al. Pressure drop measurements of ceramic sponges: determining the hydraulic diameter [J]. Chemical Engineering Science, 2009, 64(16): 3633-3640.
[21] HUU T T, LACROIX M, HUU C P, et al. Towards a more realistic modeling of solid foam: use of the pentagonal dodecahedron geometry [J]. Chemical Engineering Science, 2009, 64(24): 5131-5142.
[22] 杨肖虎, 邝九杰, 白佳希, 等. 高孔隙率通孔金属泡沫有效导热系数的实验和理论研究 [J]. 西安交通大学学报, 2014, 48(4): 79-84.
YANG Xiaohu, KUANG Jiujie, BAI Jiaxi, et al. Experimental and analytic investigations for effective thermal conductivity in high porosity metallic foams [J]. Journal of Xi’an Jiaotong University, 2014, 48(4): 79-84.

相似文献/References:

[1]白青松,郭增旭,刘亦琳,等.通孔金属泡沫强化蓄冰实验研究[J].西安交通大学学报,2018,52(01):020.[doi:10.7652/xjtuxb201801004]
 BAI Qingsong,GUO Zengxu,LIU Yilin,et al.Experimental Study on Enhanced Ice Storage in OpenCell Metal Foams[J].Journal of Xi'an Jiaotong University,2018,52(05):020.[doi:10.7652/xjtuxb201801004]
[2]郭增旭,白青松,杨肖虎,等.不同倾角下通孔金属泡沫强化蓄热实验研究[J].西安交通大学学报,2019,53(01):157.[doi:10.7652/xjtuxb201901021]
 GUO Zengxu,BAI Qingsong,YANG Xiaohu,et al.Experimental Investigation on the Heat Storage Enhancement of? Phase Change Materials Embedded in OpenCell Metal Foam in? an Inclined Rectangular Enclosure[J].Journal of Xi'an Jiaotong University,2019,53(05):157.[doi:10.7652/xjtuxb201901021]
[3]张子鼎,梁兴雨,王亚军,等.金属泡沫型微粒捕集器中颗粒物沉积特性试验研究[J].西安交通大学学报,2020,54(07):075.[doi:10.7652/xjtuxb202007010]
 ZHANG Ziding,LIANG Xingyu,WANG Yajun,et al.Experimental Study on the Deposition Characteristics of Particulate Matter in Metal Foam Particulate Filter[J].Journal of Xi'an Jiaotong University,2020,54(05):075.[doi:10.7652/xjtuxb202007010]

备注/Memo

备注/Memo:
收稿日期: 2019-11-11。作者简介: 陈康(1988—),男,博士后; 郭烈锦(通信作者),男,教授,博士生导师,中国科学院院士。基金项目: 国家自然科学基金资助项目(51888103)。
更新日期/Last Update: 2020-05-10