[1]何泽银,杨金明,范爱军,等.旋叶式压缩机叶片动态接触激励机理[J].西安交通大学学报,2020,54(05):078-86.[doi:10.7652/xjtuxb202005011]
 HE Zeyin,YANG Jinming,FAN Aijun,et al.Characterization of Dynamic Contact Excitation of Rotary Vane Compressor Blade[J].Journal of Xi'an Jiaotong University,2020,54(05):078-86.[doi:10.7652/xjtuxb202005011]
点击复制

旋叶式压缩机叶片动态接触激励机理
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第05期
页码:
078-86
栏目:
出版日期:
2020-05-10

文章信息/Info

Title:
Characterization of Dynamic Contact Excitation of Rotary Vane Compressor Blade
文章编号:
0253-987X(2020)05-0078-09
作者:
何泽银12 杨金明1 范爱军2 陶平安2 刘红梅2 孙世政1
1.重庆交通大学机电与车辆工程学院, 400074, 重庆; 2.重庆建设汽车系统股份有限公司汽车热管理系统工程技术研究中心, 400052, 重庆
Author(s):
HE Zeyin12 YANG Jinming1 FAN Aijun2 TAO Ping’an2 LIU Hongmei2 SUN Shizheng1
1. School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 2.Automotive Thermal Management System Engineering Technology Research Center, Chongqing Construction Automotive Systems Co. Ltd., Chongqing 400052,
关键词:
旋叶式压缩机 基元腔气体压力 动态接触激励
Keywords:
rotary vane compressor elementary cavity pressure dynamic contact excitation
分类号:
TH455
DOI:
10.7652/xjtuxb202005011
文献标志码:
A
摘要:
为表征圆弧简谐曲线组合型旋叶式压缩机叶片动态接触激励,基于气体热力学控制方程,建立工作介质在吸入、压缩及排出等过程中压缩机基元容积数学表征模型,研究压缩机基元腔气体压力变化规律。自制微型压力传感器,搭建旋叶式压缩机基元腔气体压力测量试验台,测试并验证压缩机基元腔气体压力计算方法的合理性。基于达朗贝尔原理建立叶片刚体动力学方程,计算叶片与滑槽、叶片与缸体间的非线性动态接触激励力。研究叶片偏距、叶片质量、转子转速、背压腔压力等结构及工况参数对旋叶式压缩机叶片动态接触激励的影响规律。研究结果表明:基元腔压力解析计算曲线与实测曲线变化规律基本一致,二者吻合程度较好; 优化叶片偏距可在一定程度上改善叶片受载情况,而叶片质量对其影响较小; 在额定背压腔压力条件下,转速高于8 020 r/min时叶片已出现脱空现象,因此为了防止叶片脱空以及降低摩擦磨损,应根据转速与背压腔压力关联规律对背压腔压力进行动态控制; 叶片动态支反力与动态接触力等计算结果可为压缩机机械噪声预估提供激励数据。
Abstract:
To characterize the dynamic contact excitation of the arc-harmonic curve combined rotary vane compressor blade, firstly, based on the gas thermodynamic control equation, a mathematical characterization model of the compressor element volume in the process of suction, compression and discharge of the working medium was derived, and the gas pressure variation of compressor elementary cavity was studied. Meanwhile, miniature pressure sensor was made, and a test-bed for measuring the gas pressure in the elementary cavity of rotary vane compressor was built to test and verify the rationality of the calculation method of gas pressure. Furthermore, based on the D’Alembert’s principle, the rigid body dynamic equation of the blade was established, and the nonlinear dynamic contact excitation force between the blade and chute, as well as between the blade and cylinder block, was calculated. Finally, the effects of blade offset, blade quality, rotor revolving speed, back chamber pressure and other parameters on the dynamic contact excitation of the blades were studied. The results show that: the analytic calculation curve of the gas pressure in the elementary cavity agrees well with the measured curve; the optimization of the blade offset can improve the load condition of the blade to a certain extent, but the blade quality has little influence on the load condition; under the rated back chamber pressure, when the revolving speed is higher than 8 020 r/min, the blade is separated from cylinder. So, in order to prevent the blade from separation and reduce friction and wear, the pressure in the back chamber should be dynamically controlled according to the correlation law between the revolving speed and the back chamber pressure. These calculation results of the dynamic contact force can be taken as excitation data for mechanical noise prediction of rotary vane compressor.

参考文献/References:

[1] 宋立权, 赵孝峰, 刁锦瑞, 等. 基于三圆弧的旋叶式压缩机新型线叶片设计 [J]. 机械工程学报, 2009, 45(6): 298-303.
SONG Liquan, ZHAO Xiaofeng, DIAO Jinrui, et al. New curve vane’s design based on three circular arc for rotary vane compressor [J]. Journal of Mechanical Engineering, 2009, 45(6): 298-303.
[2] AL-HAWAJ O. Theoretical modeling of sliding vane compressor with leakage [J]. International Journal of Refrigeration, 2009, 32(7): 1555-1562.
[3] 宋立权, 赵学科, 李智成, 等. 旋叶式压缩机叶片运动学理论研究与仿真 [J]. 重庆大学学报, 2011, 34(8): 60-65.
SONG Liquan, ZHAO Xueke, LI Zhicheng, et al. Blade kinematic theory for rotary vane compressor [J]. Journal of Chongqing University, 2011, 34(8): 60-65.
[4] DAINEZ P S, OLIVEIER J D, NIED A, et al. A linear resonant compressor model based on a new linearization method of the gas pressure force [J]. International Journal of Refrigeration, 2014, 48: 201-209.
[5] TAN K M, OOI K T. Heat transfer in compression chamber of a revolving vane(RV)compressor [J]. Applied Thermal Engineering, 2011, 31(8/9): 1519-1526.
[6] 江志农, 马振涛, 周超, 等. 含间隙的往复式压缩机变工况动力学分析研究 [J]. 流体机械, 2018, 46(3): 17-22.
JIANG Zhinong, MA Zhentao, ZHOU Chao, et al. Dynamic analysis of reciprocating compressor transmission mechanism with joint clearance under variable working condition [J]. Fluid Machinery, 2018, 46(3): 17-22.
[7] SHIN M, NA S, LEE J, et al. Model analysis of a novel compressor with a dual chamber for high-efficiency systems [J]. Applied Thermal Engineering, 2019, 158: 1-9.
[8] BRADSHAW C R, KEMP G, OROSZ J, et al. Development of a loss Pareto for a rotating spool compressor using high-speed pressure measurements and friction analysis [J]. Applied Thermal Engineering, 2016, 99: 392-401.
[9] 杨骅, 屈宗长, 周慧, 等. 同步回转式制冷压缩机的运动分析 [J]. 西安交通大学学报, 2008, 42(5): 565-568.
YANG Hua, QU Zongchang, ZHOU Hui, et al. Kinetic characteristics analysis for a synchronal rotary refrigerating compressor [J]. Journal of Xi’an Jiaotong University, 2008, 42(5): 565-568.
[10] 杨骅, 屈宗长, 周慧, 等. 同步回转式压缩机滑片摩擦特性研究 [J]. 西安交通大学学报, 2008, 42(7): 843-847.
YANG Hua, QU Zongchang, ZHOU Hui, et al. Friction characteristics of sliding vane for synchronal rotary compressor [J]. Journal of Xi’an Jiaotong University, 2008, 42(7): 843-847.
[11] OKUR M, ARABACI E. Experimental study of a novel hinged vane rotary turbine: part I The effect of different vane thickness and vane weight on turbine performance [J]. International Journal of Refrigeration, 2015, 51: 70-76.
[12] BIANCHI G, CIPOLLONE R. Friction power modeling and measurements in sliding vane rotary compressors [J]. Applied Thermal Engineering, 2015, 84: 276-285.
[13] BIANCHI G, CIPOLLONE R. Theoretical modeling and experimental investigations for the improvement of the mechanical efficiency in sliding vane rotary compressors [J]. Applied Energy, 2015, 142: 95-107.
[14] HU Xu, QU Zongchang, YANG Xu, et al. Theoretical study on frictional losses of a novel automotive swing vane compressor [J]. International Journal of Refrigeration, 2013, 36(3): 758-767.
[15] TEH Y L, OOI K T. Theoretical study of a novel refrigeration compressor: part I Design of the revolving vane(RV)compressor and its frictional losses [J]. International Journal of Refrigeration, 2009, 32(5): 1092-1102.
[16] CHEN Zhenhua, WU Jianhua, LI Gaimin. Experimental study on the tribological characteristic of vane-roller interface of HC290 rotary compressor with mineral oil [J]. International Journal of Refrigeration, 2018, 94: 205-213.
[17] YANG Xu, DONG Chen, QU Zongchang. Design and dynamic analysis of a novel double-swing vane compressor for electric vehicle air conditioning systems [J]. International Journal of Refrigeration, 2017, 76: 52-62.
[本刊相关文献链接]
何丽美,王开科,曹岗林,等.采用可逆质子交换膜燃料电池/膨胀机的综合能源系统性能研究.2020,54(3):97-105.[doi:10.7652/xjtuxb202003012]
姚斌,卢杰,蔡志钦,等.螺杆转子成形磨削用砂轮廓形的包络-像素设计方法.2020,54(2):16-23.[doi:10.7652/xjtuxb 202002003]
徐光南,高智勇,梁艳杰,等.采用压缩感知的流程工业异常监测数据检验与修复方法.2020,54(2):59-70.[doi:10.7652/xjtuxb202002008]
刘青山,葛俊,黄葆华,等.储能压力对液态压缩空气储能系统特性的影响.2019,53(11):1-9.[doi:10.7652/xjtuxb2019 11001]
李元,全恺,吴睿,等.往复压缩机管路大气流脉动的数值模拟和实验研究.2019,53(11):20-26.[doi:10.7652/xjtuxb 201911003]
贺晓希,宫武旗,邓俊杰,等.叶轮叶顶间隙对离心制冷压缩机性能的影响.2019,53(7):30-37.[doi:10.7652/xjtuxb 201907005]
吴建华,雷博雯,陈振华,等.丙烷旋转压缩机油池中矿物油和丙烷混合物的黏度测量与溶解度推算.2018,52(11):81-85.[doi:10.7652/xjtuxb201811012]
赵家毅,王志恒,席光,等.大预旋下离心压缩机进口结构与导叶掠角的改进研究.2017,51(11):1-6.[doi:10.7652/xjtuxb201711001]
吴小华,杨俊玲,越云凯,等.一种新型热压缩机运行特性实验研究.2017,51(11):144-149.[doi:10.7652/xjtuxb201711 020]

备注/Memo

备注/Memo:
收稿日期: 2019-10-12。作者简介: 何泽银(通信作者),男,副教授,硕士生导师。基金项目: 重庆市技术创新与应用发展专项资助项目(cstc2019jscx-msxmX0038); 重庆市自然科学基金资助项目(cstc2019jcyj-msxmX0799); 重庆市科委基础科学与前沿技术研究资助项目(cstc2017jcyjAX0053)。
更新日期/Last Update: 2020-05-10