[1]李晓祥,王安麟,樊旭灿,等.面向离合器接合过程的比例电磁阀动态特性模型与设计[J].西安交通大学学报,2020,54(05):046-52.[doi:10.7652/xjtuxb202005007]
 LI Xiaoxiang,WANG Anlin,FAN Xucan,et al.Dynamic Characteristics Model and Design of Proportional Solenoid Valve for Clutch Engagement Process[J].Journal of Xi'an Jiaotong University,2020,54(05):046-52.[doi:10.7652/xjtuxb202005007]
点击复制

面向离合器接合过程的比例电磁阀动态特性模型与设计
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第05期
页码:
046-52
栏目:
出版日期:
2020-05-10

文章信息/Info

Title:
Dynamic Characteristics Model and Design of Proportional Solenoid Valve for Clutch Engagement Process
文章编号:
0253-987X(2020)05-0046-07
作者:
李晓祥 王安麟 樊旭灿 李晓田
同济大学机械与能源工程学院, 201804, 上海
Author(s):
LI Xiaoxiang WANG Anlin FAN Xucan LI Xiaotian
School of Mechanical Engineering, Tongji University, Shanghai 201804, China
关键词:
比例电磁阀 响应面方法 优化设计 动态特性
Keywords:
proportional solenoid valve response surface methodology optimal design dynamic characteristics
分类号:
TH137.52
DOI:
10.7652/xjtuxb202005007
文献标志码:
A
摘要:
为提高离合器接合过程控制油压响应性能和精准度,提出了一种比例电磁阀动态特性模型与设计方法。首先,建立比例电磁阀二维有限元模型并通过试验验证了模型的准确性,借助试验设计和响应面方法建立电磁力的电磁铁结构参数模型,为电磁力与电流映射关系精准设计提供了参数化表达。其次,以比例电磁阀阀芯质量、弹簧刚度及其预紧力、黏性阻尼系数为设计变量,以压力上升时间及其超调量相结合的归一化综合函数最小值为优化目标,对其进行优化设计并分析其稳健性,试验结果表明输出油压动态响应时间减少18%、油压超调降低31%,能有效地满足其动态响应特性要求。最后,对比例电磁阀电流油压稳态输出特性进行试验验证,所建模型的仿真数据与试验结果相关性为0.998 3。该方法有效地提高了离合器接合过程控制油压的综合性能,且所提出的比例电磁阀动态特性模型与设计方法对分析同类控制油压问题具有工程性借鉴价值。
Abstract:
In order to improve the oil pressure response control performance and accuracy during the clutch engagement process, a dynamic model and a design method of proportional solenoid valve(PSV)is proposed. First, a two-dimensional finite element model of PSV is established and the accuracy of the model is verified by experiments. The electromagnetic structure parameter model of the electromagnetic force established by the design of experiment(DOE)and the response surface method(RSM)provides a parametric representation for the precise design of the electromagnetic force and current mapping relationship. Then, taking the spool mass, spring stiffness, preload and damping coefficient of the PSV as the design variables and the minimum of the normalized comprehensive function combined with the pressure response time and overshoot as the optimization objective, the optimal design of the PSV is carried out and its robustness is analyzed. The test results show that the dynamic response time of the output oil pressure is reduced by 18% and the oil pressure overshoot is reduced by 31%, which meets the requirement of the dynamic response characteristics. Finally, the steady-state output characteristics of the PSV current versus oil pressure are tested and verified. The correlation between the simulation data of the model and the test results is 0.998 3. This method effectively improves the comprehensive performance of the oil pressure control during the clutch engagement process. The proposed dynamic characteristic model and design method of the PSV provide an engineering reference for analyzing similar oil pressure control problem.

参考文献/References:

[1] MENG F, ZHANG H, CAO D, et al. System modeling and pressure control of a clutch actuator for heavy-duty automatic transmission systems [J]. IEEE Transactions on Vehicular Technology, 2016, 65(7): 4865-4874.
[2] WAN G Q, LI K Q, PEI L, et al. Optimal tracking control for automatic transmission shift process [J]. Journal of Beijing Institute of Technology, 2015, 24(4): 458-465.
[3] HAJ-FRAJ A, PFEIFFER F. Optimal control of gear shift operations in automatic transmissions [J]. Journal of the Franklin Institute, 2001, 338(2/3): 371-390.
[4] CHEN Che-Pin, CHIANG Mao-Hsiung. Development of proportional pressure control valve for hydraulic braking actuator of automobile ABS [J]. Applied Sciences, 2018, 8(4): 639-656.
[5] MENG F, TAO G, ZHANG T, et al. Optimal shifting control strategy in inertia phase of an automatic transmission for automotive applications [J]. Mechanical Systems and Signal Processing, 2015, 60/61: 742-752.
[6] BAYAT F, TEHRANI A F, DANESH M. Finite element analysis of proportional solenoid characteristics in hydraulic valves [J]. International Journal of Automotive Technology, 2012, 13(5): 809-816.
[7] YUN S N, HAM Y B, PARK J H. New approach to design control cone for electro-magnetic proportional solenoid actuator [C]∥IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway, NJ, USA: IEEE, 2012: 982-987.
[8] LEQUESNE B P. Finite-element analysis of a constant-force solenoid for fluid flow control [J]. IEEE Transactions on Industry Applications, 1988, 24(4): 574-581.
[9] ANGADI S V, JACKSON R L, CHOE S Y, et al. Reliability and life study of hydraulic solenoid valve: part 1 A multi-physics finite element model [J]. Engineering Failure Analysis, 2009, 16(3): 874-887.
[10] ANGADI S V, JACKSON R L, CHOE S Y, et al. Reliability and life study of hydraulic solenoid valve: part 2 Experimental study [J]. Engineering Failure Analysis, 2009, 16(3): 944-963.
[11] TAGHIZADEH M, GHAFFARI A, NAJAFI F. Modeling and identification of a solenoid valve for PWM control applications [J]. Comptes Rendus de l’Academie des Sciences Serie II b/Mecanique, 2009, 337(3): 131-140.
[12] DASGUPTA K, WATTON J. Dynamic analysis of proportional solenoid controlled piloted relief valve by bond graph [J]. Simulation Modelling Practice and Theory, 2005, 13(1): 21-38.
[13] LEE G S. Design improvement of a linear control solenoid valve using multiphysics simulation [J]. Mechanics, 2018, 24(3): 352-359.
[14] 魏巍, 杨印阳, 孔令兴, 等. 液力缓速器放液支路先导比例电磁阀瞬态特性优化 [J]. 北京理工大学学报, 2019, 39(1): 14-21.
WEI Wei, YANG Yinyang, KONG Lingxing, et al. Transient characteristics optimal design of proportional solenoid valve for hydrodynamic retarder discharge branch [J]. Transactions of Beijing Institute of Technology, 2019, 39(1): 14-21.
[15] 刘艳芳, 毛鸣翀, 徐向阳, 等. 液压电磁阀多物理场耦合热力学分析 [J]. 机械工程学报, 2014, 50(2): 139-145.
LIU Yanfang, MAO Mingchong, XU Xiangyang, et al. Multi-discipline coupled thermo-mechanics analysis of hydraulic solenoid valves [J]. Journal of Mechanic Engineering, 2014, 50(2): 139-145.
[16] 孟飞, 陶刚, 张美荣, 等. 自动变速器比例电磁阀优化设计与分析 [J]. 兵工学报, 2014, 35(5): 590-596.
MENG Fei, TAO Gang, ZHANG Meirong, et al. Optimization design and analysis of high speed wet proportional solenoid valve [J]. Acta Armamentarii, 2014, 35(5): 590-596.
[17] 孟飞, 陶刚, 陈慧岩. 一种用于自动变速器的比例电磁阀研究 [J]. 机械工程学报, 2014, 50(20): 100-106.
MENG Fei, TAO Gang, CHEN Huiyan. Research on proportional solenoid valve used for automatic transmission [J]. Journal of Mechanic Engineering, 2014, 50(20): 100-106.
[18] LIU Q, BO H, QIN B. Experimental study and numerical analysis on electromagnetic force of direct action solenoid valve [J]. Nuclear Engineering and Design, 2010, 240(12): 4031-4036.
[19] 向洪岗, 陈德桂, 李兴文, 等. 基于三维磁场分析建立电磁铁等效磁路的研究 [J]. 西安交通大学学报, 2003, 37(8): 808-811.
XIANG Honggang, CHEN Degui, LI Xingwen, et al. Construction of equivalent magnetic circuit for electromagnet based on 3-D magnetic field [J]. Journal of Xi’an Jiaotong University, 2003, 37(8): 808-811.
[20] MENG F, ZHANG H, CAO D, et al. System modeling, coupling analysis, and experimental validation of a proportional pressure valve with pulse width modulation control [J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(3): 1742-1753.
[21] 王兆文, 白国军, 黄胜, 等. 基于正交设计的燃油蒸发系统电磁阀综合性能优化 [J]. 农业机械学报, 2017(4): 332-339.
WANG Zhaowen, BAI Guojun, HUANG Sheng, et al. Optimization on integrated performance of solenoid valve in fuel evaporation system based on orthogonal design [J]. Transactions of the Chinese Society of Agricultural Machinery, 2017(4): 332-339.
[22] 潘运平, 吴仕凡, 余先谋. 汽车变速箱换挡比例电磁阀的磁场仿真研究 [J]. 机械设计与制造, 2018(1): 184-187.
PAN Yunping, WU Shifan, YU Xianmou. Simulation research of magnetic field on gear-shifting proportional solenoid valve of transmission [J]. Machinery Design & Manufacture, 2018(1): 184-187.
[23] 刘潜峰, 薄涵亮, 秦本科, 等. 直动电磁阀设计参数敏感性分析 [J]. 核动力工程, 2009, 30(5): 96-100.
LIU Qianfeng, BO Hanliang, QIN Benke, et al. Analysis of design parameter sensitivity of direct action solenoid valve [J]. Nuclear Power Engineering, 2009, 30(5): 96-100.
[24] 李晓祥, 王安麟, 樊旭灿. 高负压液压油缸系统流量再生液压阀再设计和能效分析 [J]. 西安交通大学学报, 2019, 53(7): 52-59.
LI Xiaoxiang, WANG Anlin, FAN Xucan. Energy efficiency analysis and redesign of flow regenerating hydraulic valve for high negative pressure hydraulic cylinder system [J]. Journal of Xi’an Jiaotong University, 2019, 53(7): 52-59.
[25] 黎启柏. 电液比例控制与数字控制系统 [M]. 北京: 机械工业出版社, 1997: 35-38.

相似文献/References:

[1]李晓祥,王安麟,樊旭灿.高负压液压油缸系统流量再生液压阀再设计和能效分析[J].西安交通大学学报,2019,53(07):052.[doi:10.7652/xjtuxb201907008]
 LI Xiaoxiang,WANG Anlin,FAN Xucan.Energy Efficiency Analysis and Redesign of Flow Regenerating Hydraulic Valve for High Negative Pressure Hydraulic Cylinder System[J].Journal of Xi'an Jiaotong University,2019,53(05):052.[doi:10.7652/xjtuxb201907008]

备注/Memo

备注/Memo:
收稿日期: 2019-09-24。作者简介: 李晓祥(1984—),男,博士生; 李晓田(通信作者),男,讲师。基金项目: 国家重点研发计划资助项目(2018YFC0810200-03)。
更新日期/Last Update: 2020-05-10