[1]田东东,王会,刁永发,等.金属泡沫孔密度对石蜡融化性能影响的实验研究[J].西安交通大学学报,2020,54(05):032-39.[doi:10.7652/xjtuxb202005005]
 TIAN Dongdong,WANG Hui,DIAO Yongfa,et al.Experimental Investigation on the Melting Behavior of Paraffin Wax Embedded in Metal Foams with Different Pore Densities[J].Journal of Xi'an Jiaotong University,2020,54(05):032-39.[doi:10.7652/xjtuxb202005005]
点击复制

金属泡沫孔密度对石蜡融化性能影响的实验研究
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第05期
页码:
032-39
栏目:
出版日期:
2020-05-10

文章信息/Info

Title:
Experimental Investigation on the Melting Behavior of Paraffin Wax Embedded in Metal Foams with Different Pore Densities
文章编号:
0253-987X(2020)05-0032-08
作者:
田东东1 王会1 刁永发1 周颖2
1.东华大学环境科学与工程学院, 201620, 上海; 2.上海建科广申建筑设计有限公司, 200000, 上海
Author(s):
TIAN Dongdong1 WANG Hui1 DIAO Yongfa1 ZHOU Ying2
1. School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; 2. Shanghai Jianke Guangshen Architectural Design Co. Ltd., Shanghai 200000, China
关键词:
石蜡 金属泡沫 复合相变材料 孔密度 蓄热量
Keywords:
paraffin wax metal foam composite phase-change material pore density
分类号:
TK02
DOI:
10.7652/xjtuxb202005005
文献标志码:
A
摘要:
为了探究金属泡沫孔密度对石蜡融化性能的影响,设计搭建了相变蓄热实验台,制作了不同孔密度的复合相变材料。通过实验对比研究了镍复合相变材料和铜复合相变材料内部温度分布,分析了孔密度对导热和对流换热强度的影响,比较了在相同时间内镍复合相变材料和铜复合相变材料的蓄热量。实验结果表明:镍复合相变材料随着孔密度的增大,温度堆积现象加重; 当孔密度为1.02 mm-1时,镍复合相变材料的对流和导热换热强度相等; 当孔密度为1.26 mm-1时,铜复合相变材料的对流和导热换热强度相等; 当孔密度为2.36 mm-1时,铜复合相变材料对应的蓄热量最多; 当孔密度为0.79 mm-1时,镍复合相变材料对应的蓄热量最多。
Abstract:
To explore the melting behavior of paraffin wax in metal foam composite phase-change materials with different pore densities, a phase-change thermal storage experimental setup was designed and composite phase-change materials with different pore densities were prepared. The internal temperature distributions of the copper composite phase-change material and the nickel composite phase-change material were studied. The heat storage capacities of the copper composite phase-change material and the nickel composite phase-change material were compared. Experimental results showed that the temperature accumulation of the nickel composite phase-change material increases with the increase of pore density. For the nickel composite phase-change material, the heat transfer intensities of heat conduction and convection are equivalent when the pore density is 1.02 mm-1, while for the copper composite phase-change material, it is 1.26 mm-1. The copper composite phase-change material with the pore density of 2.36 mm-1 has the maximum heat storage, and the nickel composite phase-change material with the pore density of 0.79 mm-1 has the maximum heat storage.

参考文献/References:

[1] 张鹏, 肖鑫, 王如竹, 等. 壳管式潜热蓄能系统换热特性 [J]. 化工学报, 2012, 63(S2): 14-20.
ZHANG Peng, XIAO Xin, WANG Ruzhu, et al. Heat transfer characteristics of shell-tube latent thermal energy storage system [J]. CIESC Journal, 2012, 63(S2): 14-20.
[2] 马朝, 何雅玲, 袁帆, 等. 高温套管式熔融盐相变蓄热器蓄热性能实验研究 [J]. 西安交通大学学报, 2017, 51(5): 1-8.
MA Chao, HE Yaling, YUAN Fan, et al. Experimental study on thermal storage performance of high temperature casing molten salt phase change accumulator [J]. Journal of Xi’an Jiaotong University, 2017, 51(5): 1-8.
[3] 赵亮, 邢玉明, 吕倩, 等. 纳米复合相变材料熔化过程数值模拟 [J]. 北京航空航天大学学报, 2018, 44(9): 77-85.
ZHAO Liang, XING Yuming, Lü Qian, et al. Numerical simulation of melting process of nanocomposite phase change materials [J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 77-85.
[4] DHAIDAN N S, KHODADADI J M, AL-HATTAB T A, et al. Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity [J]. International Journal of Heat and Mass Transfer, 2013, 67: 455-468.
[5] YAO Y, WU H, LIU Z, et al. Pore-scale visualization and measurement of paraffin melting in high porosity open-cell copper foam [J]. International Journal of Thermal Sciences, 2018, 123: 73-85.
[6] MAHDI J M, NSOFOR E C. Multiple-segment metal foam application in the shell-and-tube PCM thermal energy storage system [J]. Journal of Energy Storage, 2018, 20: 529-541.
[7] LAFDI K, MESALHY O, SHAIKH S. Experimental study on the influence of foam porosity and pore size on the melting of phase change materials [J]. Journal of Applied Physics, 2007, 102(8): 759.
[8] MANCIN S, DIANI A, DORETTI L, et al. Experimental analysis of phase change phenomenon of paraffin waxes embedded in copper foams [J]. International Journal of Thermal Sciences, 2015, 90: 79-89.
[9] TAO Y B, LIN C H, HE Y L. Effect of surface active agent on thermal properties of carbonate salt/carbon nanomaterial composite phase change material [J]. Applied Energy, 2015, 156: 478-489.
[10] AL-ABIDI A A, MAT S, SOPIAN K, et al. Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers [J]. Applied Thermal Engineering, 2013, 53(1): 147-156.
[11] YANG X H, FENG S S, ZHANG Q L, et al. The role of porous metal foam on the unidirectional solidification of saturating fluid for cold storage [J]. Applied Energy, 2017, 194: 508-521.
[12] 王会, 郭烈锦. 非平衡条件下金属泡沫管内的流动与传热分析 [J]. 工程热物理学报, 2015, 36(12): 2699-2702.
WANG Hui, GUO Liejin. Analysis of flow and heat transfer in metal foam tube under non-equilibrium conditions [J]. Journal of Engineering Thermophysics, 2015, 36(12): 2699-2702.
[13] 王会. 管内填充金属泡沫的流动与传热特性 [D]. 西安: 西安交通大学, 2017: 2-3.
[14] XIAO X, ZHANG P, LI M. Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage [J]. International Journal of Thermal Sciences, 2014, 81: 94-105.
[15] ZHAO C Y, LU W, TIAN Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials(PCMs)[J]. Solar Energy, 2010, 84(8): 1402-1412.
[16] HUANG X, LIN Y, ALVA G, et al. Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage [J]. Solar Energy Materials and Solar Cells, 2017, 170: 68-76.
[17] JIN H Q, FAN L W, LIU M J, et al. A pore-scale visualized study of melting heat transfer of a paraffin wax saturated in a copper foam: effects of the pore size [J]. International Journal of Heat Mass Transfer, 2017, 112: 39-44.
[18] TAO Y B, YOU Y, HE Y L. Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material [J]. Applied Thermal Engineering, 2016, 95: 476-485.
[19] QU Z G, LI W Q, WANG J L, et al. Passive thermal management using metal foam saturated with phase change material in a heat sink [J]. Heat Mass Transfer, 2012, 39(10): 1546-1549.
[20] TIAN Y, ZHAO C Y. A numerical investigation of heat transfer in phase change materials(PCMs)embedded in porous metals [J]. Energy, 2011, 36: 5539-5546.
[21] STRITIH U. An experimental study of enhanced heat transfer in rectangular PCM thermal storage [J]. International Journal of Heat and Mass Transfer, 2004, 47: 2841-2847.
[22] MESALHY O, LAFDI K, ELGAFY A, et al. Numerical study for enhancing the thermal conductivity of phase change material(PCM)storage using high thermal conductivity porous matrix [J]. Energy Conversion and Management, 2005, 46(6): 847-867.
[23] INAYAT A, FREUND H, ZEISER T, et al. Determining the specific surface area of ceramic foams: the tetrakaidecahedra model revisited [J]. Chemical Engineering Science, 2011, 66(6): 1179-1188.
[24] 刘伟, 范爱武, 黄晓明. 多孔介质传热传质理论与应用 [M]. 北京: 科学出版社, 2006: 25-26.
[25] 杨世铭, 陶文铨. 传热学 [M]. 4版. 北京: 高等教育出版社, 2006: 11-12.
[26] 朱明善, 刘颖, 林兆庄, 等. 工程热力学 [M]. 2版. 北京: 清华大学出版社, 2011: 32-33.

相似文献/References:

[1]王会,郭烈锦,刁永发.梯度渗透率金属泡沫管内的流动与传热特性分析[J].西安交通大学学报,2019,53(11):085.[doi:10.7652/xjtuxb201911012]
 WANG Hui,GUO Liejin,DIAO Yongfa.Analysis of Flow and Heat Transfer Characteristics in Metal Foam Filled Tube with Gradient Permeability[J].Journal of Xi'an Jiaotong University,2019,53(05):085.[doi:10.7652/xjtuxb201911012]
[2]田东东,王会,刁永发,等.金属泡沫铜/石蜡复合相变材料融化传热特性的实验研究[J].西安交通大学学报,2020,54(03):188.[doi:10.7652/xjtuxb202003023]
 TIAN Dongdong,WANG Hui,DIAO Yongfa,et al.Experimental Study on the Melting Heat Transfer Characteristics of Paraffin/Copper Foam Composite[J].Journal of Xi'an Jiaotong University,2020,54(05):188.[doi:10.7652/xjtuxb202003023]

备注/Memo

备注/Memo:
收稿日期: 2019-09-05。作者简介: 田东东(1991—),男,硕士生; 王会(通信作者),女,讲师。基金项目: 上海市青年科技英才扬帆计划资助项目(19YF14011700); 中央高校基本科研业务费专项资金资助项目(2232019D3-25)。
更新日期/Last Update: 2020-05-10