[1]黄波,张波涛,孙运达,等.矩形狭缝流道临界流研究[J].西安交通大学学报,2020,54(05):026-31.[doi:10.7652/xjtuxb202005004]
 HUANG Bo,ZHANG Botao,SUN Yunda,et al.Investigation on the Critical Flow Through a Rectangular Narrow Slit[J].Journal of Xi'an Jiaotong University,2020,54(05):026-31.[doi:10.7652/xjtuxb202005004]
点击复制

矩形狭缝流道临界流研究
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第05期
页码:
026-31
栏目:
出版日期:
2020-05-10

文章信息/Info

Title:
Investigation on the Critical Flow Through a Rectangular Narrow Slit
文章编号:
0253-987X(2020)05-0026-06
作者:
黄波 张波涛 孙运达 龚圣捷
上海交通大学核科学与工程学院, 200240, 上海
Author(s):
HUANG Bo ZHANG Botao SUN Yunda GONG Shengjie
School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
关键词:
LBB分析 临界流 热力学不平衡 Henry-Fauske模型
Keywords:
LBB analysis critical flow thermodynamic non-equilibrium Henry-Fauske model
分类号:
TK12
DOI:
10.7652/xjtuxb202005004
文献标志码:
A
摘要:
针对核电厂破前漏(LBB)分析中冷却剂通过管道贯穿裂纹的泄漏率问题,采用流道尺寸为80 mm(长)×10 mm(宽)×0.6 mm(间隙)的矩形狭缝实验件开展临界流实验,研究不同上游压力和温度对临界流量的影响,上游压力范围为4~12 MPa,过冷度范围为10~125 ℃。针对实验中发现的热力学不平衡现象,通过加入Richter的闪蒸过热度预测公式来改进Henry-Fauske临界流模型的计算。结果表明:临界流量随上游压力和过冷度的增大而增大; 上游过冷度较小的工况下,热力学不平衡现象比较明显,闪蒸起始位置会随着上游流体过冷度的减小向上游方向移动,对临界流量影响较大; 改进的Henry-Fauske模型可以预测不同上游条件下的闪蒸起始位置,从而很好地估计临界流量大小,计算值与实验数据误差在±10%以内。
Abstract:
Critical flow experiments through a rectangular narrow slit were conducted based on the leakage rate of the coolant through crack in the LBB analysis of nuclear power plant pipe system. The test section with a structure size of 80 mm×10 mm×0.6 mm was used to investigate the influences of upstream pressure and temperature on the critical flowrate, within the upstream pressure range of 4-12 MPa and subcooling range of 10-125 ℃. The Henry-Fauske critical flow calculation model was modified by introducing Richter’s flashing superheat prediction formula because of the observed thermodynamic non-equilibrium in experiments. Results show that the critical flowrate increases with the upstream pressure and subcooling. In addition, the thermodynamic non-equilibrium is more obvious for the cases with lower upstream subcooling. The location of the flashing inception moves to the upstream with the decrease of upstream subcooling and has a great impact on critical flowrate, which can be predicted by the modified Henry-Fauske model. The predicted results of the critical flowrate by the improved model show a good agreement with the experimental data with an error of ±10%.

参考文献/References:

[1] 房永刚, 王庆, 苏岩, 等. LBB和BP在核电厂高能管道上应用的差异性研究 [J]. 核安全, 2017, 16(4): 61-65.
FANG Yonggang, WANG Qing, SU Yan, et al. Study on differences of LBB and BP concepts applied to high energy pipe of nuclear power plant [J]. Nuclear Safety, 2017, 16(4): 61-65.
[2] BENIUSSA K, HEDNER G, CAKMAK E, et al. European safety practices on the application of leak before break(LBB)concept: EUR18549 [R]. Luxembourg: European Commission, 2000.
[3] SCOTT P M, OLSON R J, WILKOWSKI G M. Development of technical basis for leak-before-break evaluation procedures: NUREG/CR-6765 [R]. Washington, USA: US NRC, 2002.
[4] 陈听宽, 徐进良, 罗毓珊. 两相临界流实验研究 [J]. 工程热物理学报, 2002, 23(5): 623-626.
CHEN Tingkuan, XU Jinliang, LUO Yushan. Experimental study on two-phase critical flow [J]. Journal of Engineering Thermophysics, 2002, 23(5): 623-626.
[5] 陈玉宙, 杨春生, 张曙明, 等. 基于喷嘴临界流实验对现有物理模型的评价 [J]. 原子能科学技术, 2009, 43(6): 485-490.
CHEN Yuzhou, YANG Chunsheng, ZHANG Shuming, et al. Evaluation of existing physical models on critical flow based on experiment with a nozzle [J]. Atomic Energy Science and Technology, 2009, 43(6): 485-490.
[6] YANG Z, BI Q, ZHU G, et al. Leak rates of high pressure steam-water across simulation crack [J]. Experimental Thermal and Fluid Science, 2014, 59: 118-126.
[7] ZHANG J, CHEN R H, WANG M J, et al. Prediction of LBB leakage for various conditions by genetic neural network and genetic algorithms [J]. Nuclear Engineering and Design, 2017, 325: 33-43.
[8] 殷海峰, 梁兵兵, 徐宁. 管道泄漏率计算模型研究和程序开发 [J]. 核技术, 2013, 36(4): 90-93.
YIN Haifeng, LIANG Bingbing, XU Ning. Development of leak rate calculation model and code in piping [J]. Nuclear Techniques, 2013, 36(4): 90-93.
[9] PARK J H, CHO Y K, KIM S H, et al. Estimation of leak rate through circumferential cracks in pipes in nuclear power plants [J]. Nuclear Engineering and Technology, 2015, 47(3): 332-339.
[10] JOHN H, REIMANN J, WESTPHAL F, et al. Critical two-phase flow through rough slits [J]. International Journal of Multiphase Flow, 1988, 14(2): 155-174.
[11] CHUN M H, PARK C K, PARK J W. An experimental investigation of critical flow rates of subcooled water through short pipes with small diameters [J]. International Communications in Heat & Mass Transfer, 1996, 23(8): 1053-1064.
[12] FRASER D W H, ABDELMESSIH A H. A study of the effects of the location of flashing inception on maximum and minimum critical two-phase flow rates: part I Experimental [J]. Nuclear Engineering and Design, 2002, 211(1): 1-11.
[13] HENRY R E. The two-phase critical discharge of initially saturated or subcooled liquid [J]. Nuclear Science and Engineering, 1970, 41(3): 336-342.
[14] HENRY R E, FAUSKE H K. The two-phase critical flow of one-component mixtures in nozzles, orifices, and short tubes [J]. Journal of Heat Transfer, 1971, 93(2): 179-187.
[15] 乔红威, 李琦, 刘志伟, 等. LBB设计中管道贯穿裂纹张开位移及泄漏率计算研究 [J]. 核技术, 2013, 36(4): 94-100.
QIAO Hongwei, LI Qi, LIU Zhiwei, et al. Research on crack-opening displacement and leak rate prediction of the through-wall crack in LBB design [J]. Nuclear Techniques, 2013, 36(4): 94-100.
[16] 吴万军, 谢海, 兰彬, 等. 管道裂纹泄漏率计算软件开发 [J]. 核动力工程, 2015, 36(4): 65-68.
WU Wanjun, XIE Hai, LAN Bin, et al. Development of computer code on pipe crack leakage [J]. Nuclear Power Engineering, 2015, 36(4): 65-68.
[17] RICHTER H J. Separated two-phase flow model: application to critical two-phase flow [J]. International Journal of Multiphase Flow, 1983, 9(5): 511-530.

备注/Memo

备注/Memo:
收稿日期: 2019-09-20。作者简介: 黄波(1996—),男,硕士生; 龚圣捷(通信作者),男,副教授。基金项目: 国家自然科学基金资助项目(51306112)。
更新日期/Last Update: 2020-05-10