[1]陈日新,李德华,秦明元,等.四氢呋喃族燃料层流燃烧特性的实验研究[J].西安交通大学学报,2020,54(05):017-25.[doi:10.7652/xjtuxb202005003]
 CHEN Rixin,LI Dehua,QIN Mingyuan,et al.Experimental Study on the Laminar Burning Characteristics of THF Family Fuels[J].Journal of Xi'an Jiaotong University,2020,54(05):017-25.[doi:10.7652/xjtuxb202005003]
点击复制

四氢呋喃族燃料层流燃烧特性的实验研究
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第05期
页码:
017-25
栏目:
出版日期:
2020-05-10

文章信息/Info

Title:
Experimental Study on the Laminar Burning Characteristics of THF Family Fuels
文章编号:
0253-987X(2020)05-0017-09
作者:
陈日新 李德华 秦明元 何本壮 樊祥山 王锡斌
西安交通大学能源与动力工程学院, 710049, 西安
Author(s):
CHEN Rixin LI Dehua QIN Mingyuan HE Benzhuang FAN Xiangshan WANG Xibin
School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
关键词:
四氢呋喃族燃料 定容燃烧弹 非线性外推 层流燃烧特性 火焰面不稳定性
Keywords:
THF family fuels constant volume combustion bomb nonlinear extrapolation
分类号:
TK42
DOI:
10.7652/xjtuxb202005003
文献标志码:
A
摘要:
为探究高温高压条件下四氢呋喃族燃料的层流燃烧过程,利用高速摄影和纹影技术的定容燃烧弹实验,采用非线性外推方法,获得了四氢呋喃(THF)、2-甲基四氢呋喃(MTHF)、2,5-二甲基四氢呋喃(DMTHF)在初始压力为0.1~0.4 MPa、初始温度为373~453 K及当量比为0.7~1.6下的层流燃烧特性。结果表明:3种燃料的层流燃烧速率随初始温度升高而增大,随初始压力增大而减小,随当量比增加先增大后减小,峰值出现在当量比为1.1附近,三者层流燃烧速率的关系为Su,THF>Su,MTHF>Su,DMTHF; 三者速率的差异主要是由于绝热火焰温度关系为Tad,THF>Tad,MTHF>Tad,DMTHF、热扩散率关系为Dth,THF≈Dth,MTHF>Dth,DMTHF所致。定量分析表明:层流燃烧速率与初始温度之间呈正指数幂函数关系,与初始压力呈负指数幂函数关系,三者中MTHF对于初始温度与压力的变化最敏感; 三种燃料的火焰面不稳定性关系为Lb,THF>Lb,MTHF>Lb,DMTHF
Abstract:
To investigate the laminar burning processes of THF family fuels as alternative fuels of internal combustion engines, the laminar burning characteristics of THF family fuels, including tetrahydrofuran(THF), 2-methyltetrahydrofuran(MTHF)and 2,5-dimethyltetra-hydrofuran(DMTHF), were studied under the operating conditions of initial pressure of 0.1-0.4 MPa, initial temperature of 373-453 K and equivalence ratio of 0.7-1.6 in constant volume combustion bomb using high-speed schlieren photography technique. The nonlinear extrapolation method was used to obtain the laminar burning velocity and Markstein length. The results show that the laminar burning velocities of the three fuels increase with the initial temperature, and drop with the initial pressure. Increasing the equivalence ratio, the laminar flame velocity first increases and then decreases gradually, and its peak appears near the equivalence ratio of 1.1. The laminar burning velocities and flame instability among the three fuels are in order ofSu,THF>Su,MTHF>Su,DMTHF andLb,THF>Lb,MTHF>Lb,DMTHF. The difference of the velocities is mainly due to the adiabatic flame temperature and thermal diffusivity beingTad,THF>Tad,MTHF>Tad,DMTHF andDth,THF≈Dth,MTHF>Dth,DMTHF, respectively. Quantitative analysis indicates that the laminar burning velocity is a positive exponential power function with the initial temperature, while a negative exponential power function with the initial pressure. Among the three fuels, MTHF is most sensitive to the variation of initial temperature and pressure.

参考文献/References:

[1] International Energy Agency. Renewables 2018: market analysis and forecast from 2018 to 2023 [R/OL]. [2019-10-30]. https:∥www.iea.org/renewables 2018/.
[2] RUDOLPH T W, THOMAS J J. NOx, NMHC and CO emissions from biomass derived gasoline extenders [J]. Biomass, 1988, 16(1): 33-49.
[3] LUCAS S V, LOEHR D A, MEYER M E, et al. Exhaust emissions and field trial results of a new, oxygenated, non-petroleum-based, waste-derived gasoline blending component: 2-methyltetrahydrofuran [C/OL]∥ International Fuels and Lubricants Meeting and exposition. [2019-11-10].DOI: 10.4271/932675.
[4] NASRULLAH R G. Effect of ethanol and tetrahydrofuran on performance and emission characteristics of ci engine fuelled with methyl ester of jatropha [J]. International Journal of Engineering Research and Technology, 2014, 4(1): 251-257.
[5] NASRULLAH M, GOPAL K R. Effect of tetrahydrofuran on performance and emission characteristics of ci engine fuelled with methyl ester of jatropha [J]. International Journal of Emerging Technology and Advanced Engineering, 2014, 3(3): 752-757.
[6] JIANG Y, XU H, MA X, et al. Laminar burning characteristics of 2-MTHF compared with ethanol and isooctane [J]. Fuel, 2017, 190: 10-20.
[7] FAN X, YANG K, JIAO X, et al. Laminar burning characteristics of 2-methyltetrohydrofuran compared with 2-methylfuran and isooctane [C]∥11th Asia-Pacific Conference on Combustion. Sydney, NSW, Australia: Combustion Institute, 2017: 2018190517 1261.
[8] WANG X, FAN X, YANG K, et al. Laminar flame characteristics and chemical kinetics of 2-methyltetrahydrofuran and the effect of blending with isooctane [J]. Combustion and Flame, 2018, 191: 213-225.
[9] 张志远, 黄佐华, 郑建军, 等. 高温高压条件下乙醇-空气-稀释气预混合气层流燃烧特性研究 [J]. 内燃机学报, 2010, 28(2): 103-108.
ZHANG Zhiyuan, HUANG Zuohua, ZHENG Jianjun, et al. Study on premixed laminar combustion characteristics of ethanol-air-diluted mixtures at elevated pressures and temperatures [J]. Transactions of CSICE, 2010, 28(2): 103-108.
[10] LAMOUREUX N, DJEBA?LI-CHAUMEIX N, PAILLARD C E. Laminar flame velocity determination for H2-air-He-CO2, mixtures using the spherical bomb method [J]. Experimental Thermal & Fluid Science, 2003, 27(4): 385-393.
[11] BRADLEY D, GASKELL P H, GU X J. Burning velocities, Markstein lengths, and flame quenching for spherical methane-air flames: a computational study [J]. Combustion and Flame, 1996, 104(1/2): 176-198.
[12] CHEN Z. On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames [J]. Combustion and Flame, 2011, 158(2): 291-300.
[13] KELLEY A P, LAW C K. Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames [J]. Combustion and Flame, 2009, 156(9): 1844-1851.
[14] SILEGHEM L, ALEKSEEV V A, VANCOILLIE J, et al. Laminar burning velocity of gasoline and the gasoline surrogate components iso-octane, n-heptane and toluene [J]. Fuel, 2013, 112(3): 355-365.
[15] 樊祥山, 孙德魁, 王井山, 等. 利用分子理论估算四氢呋喃的热物理特性参数 [J]. 西安交通大学学报, 2015, 49(3): 44-49.
FAN Xiangshan, SUN Dekui, WANG Jingshan, et al. Estimation for thermal properties of tetrahydrofuran with molecule theory [J]. Journal of Xi’an Jiaotong University, 2015, 49(3): 44-49.
[16] POLING B E, PRAUSNITZ J M, CONNELL J P O. The properties of gases and 1iquids [M]. 5th ed. New York, USA: McGraw-Hill, 2001: 9.
[17] METGHALCHI M, KECK J C. Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature [J]. Combustion and Flame, 1982, 48: 191-210.

备注/Memo

备注/Memo:
收稿日期: 2019-11-23。作者简介: 陈日新(1996—),男,硕士生; 王锡斌(通信作者),男,副教授。基金项目: 国家自然科学基金资助项目(61235003)。
更新日期/Last Update: 2020-05-10