[1]白波,李志刚,李军.上游台阶结构对跨声速透平叶栅端壁气膜冷却性能的影响[J].西安交通大学学报,2020,54(05):001-8.[doi:10.7652/xjtuxb202005001]
 BAI Bo,LI Zhigang,LI Jun.Investigation on the Effect of Upstream Step Geometry on Endwall Film Cooling Characteristics of a Transonic Turbine Cascade[J].Journal of Xi'an Jiaotong University,2020,54(05):001-8.[doi:10.7652/xjtuxb202005001]
点击复制

上游台阶结构对跨声速透平叶栅端壁气膜冷却性能的影响
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
54
期数:
2020年第05期
页码:
001-8
栏目:
出版日期:
2020-05-10

文章信息/Info

Title:
Investigation on the Effect of Upstream Step Geometry on Endwall Film Cooling Characteristics of a Transonic Turbine Cascade
文章编号:
0253-987X(2020)05-0001-08
作者:
白波1 李志刚1 李军12
1.西安交通大学能源与动力工程学院, 710049, 西安; 2.先进航空发动机协同创新中心, 100191, 北京
Author(s):
BAI Bo1 LI Zhigang1 LI Jun12
1. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China; 2. Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191, China
关键词:
上游台阶结构 双排离散气膜孔 端壁传热 气膜冷却
Keywords:
upstream step geometry double-row discrete film cooling hole endwall heat
分类号:
TK474.4
DOI:
10.7652/xjtuxb202005001
文献标志码:
A
摘要:
为了评估上游台阶结构对端壁气膜冷却性能的影响,采用商用CFD软件ANSYS FLUENT数值研究了上游后向台阶结构对跨声速透平叶栅端壁上游双排离散气膜孔冷却效率的影响。模拟某工业燃气透平真实运行工况(进口湍流度Tu=16%、出口马赫数Maex=0.85、出口雷诺数Reex=1.5×106),采用基于两类热边界条件模型的壁面换热系数和绝热冷却效率数值预测方法,计算分析了在设计工况吹风比为2.5下,具有不同上游台阶高度(ΔH=0,3,6.78,10 mm)的跨声速透平叶栅端壁热负荷分布、气膜冷却效率分布和近端壁二次流场结构。研究结果表明:上游台阶结构改变了近端壁流场,在台阶下游形成强度较大的空腔涡等复杂涡系结构,显著影响了端壁的热负荷和冷却气膜覆盖分布; 随上游台阶高度的增加,叶栅通道上游端壁传热逐渐增强,形成显著的条状高传热区; 端壁冷却效率呈现先增大后减小的变化趋势,在ΔH=6.78 mm时,端壁气膜覆盖效果最好; 在ΔH=10 mm时,上游离散孔冷却射流被限制在近吸力面三角区域,端壁冷却效率低于无进口台阶结构。
Abstract:
To evaluate the influences of the upstream step geometry on the endwall film cooling performance of the upstream double-row film holes, the commercial CFD software ANSYS FLUENT was used to predict the endwall film cooling efficiency. The endwall thermal load distribution, film cooling efficiency distribution and the secondary flow field were calculated and analyzed for four different upstream step heights(ΔH=0, 3, 6.78, 10 mm)at the practical design condition of an industrial gas turbine with the blowing ratio γBR=2.5, inlet turbulence Tu=16%, exit Mach number Maex=0.85, exit Reynolds number Reex=1.5×106 by using the numerical method based on two types of thermal boundaries. Results show that flow filed near endwall is significantly influenced by the upstream step geometry due to the complex vortex structure such as the large cavity vortex downstream of the step, which obviously changes the endwall thermal load and film cooling distribution. As the upstream step height is increased, the complex vortexes located downstream of the step are significantly enhanced, resulting in a series of striped high heat transfer regions located at the upstream of the cascade passage. Due to the influence of the upstream step geometry, the endwall film cooling efficiency first increases and then decreases with the increase of step height, and the endwall obtains the best film cooling coverage when the step height is 6.78 mm. When the upstream step height is 10 mm, the coolant jet is confined to the triangle region near the vane suction side, which results in an obvious decrease in the film cooling efficiency compared with the case of ΔH=0 mm.

参考文献/References:

[1] TOM I P, YANG S V. Turbine aerodynamics, heat transfer, materials, and mechanics [M]. Reston, VA, USA: AIAA, 2014: 189.
[2] 李雪英, 任静, 蒋洪德. 燃烧室温度剖面对静叶端壁冷却的影响 [J]. 工程热物理学报, 2015, 36(4): 752-755.
LI Xueying, REN Jing, JIANG Hongde. The influence of temperature profile of combustor on the cooling of static blade wall [J]. Journal of Engineering Thermophysics, 2015, 36(4): 752-755.
[3] 刘璐萱, 李志刚, 李军. 进口端壁不重合对跨声速透平叶栅端壁流动和传热特性影响的研究 [J]. 西安交通大学学报, 2018, 52(11): 37-44.
LIU Luxuan, LI Zhigang, LI Jun. Investigations on the effect of misalignment on inlet endwall secondary flow and heat transfer characteristics in a transonic turbine cascade [J]. Journal of Xi’an Jiaotong University, 2018, 52(11): 37-44.
[4] LEE S, JUN S, PARK B, LEE J. Effects of high free-stream turbulence on the near-wall flow and heat/mass transfer on the endwall of a linear turbine rotor cascade [C]∥ Turbo Expo 2002: Power for Land, Sea, and Air. New York, USA: ASME, 2002: 231-243.
[5] 张扬, 李毅飞, 袁新. 进口旋流对透平双通道叶栅端壁气膜冷却的影响 [J]. 工程热物理学报, 2017, 38(1): 81-86.
ZHANG Yang, LI Yifei, YUAN Xin. Effect of inlet swirl on film cooling of turbine double-channel cascade endwall [J]. Journal of Engineering Thermophysics, 2017, 38(1): 81-86.
[6] CARDWELL N D, SUNDARAM N, THOLE K A. The effects of varying the combustor-turbine gap [J]. Journal of Turbomachinery, 2007, 129(4): 756-764.
[7] THRIFT A A, THOLE K A, HADA S. Effects of orientation and position of the combustor-turbine interface on the cooling of a vane endwall [J]. Journal of Turbomachinery, 2012, 134(6): 061019.
[8] 杜昆, 李军, 晏鑫. 槽缝射流对静叶端壁冷却性能的影响 [J]. 西安交通大学学报, 2015, 49(1): 21-26.
DU Kun, LI Jun, YA Xin. Effect of the slot jet impingement on the cooling performance of the vane endwall [J]. Journal of Xi’an Jiaotong University, 2015, 49(1): 21-26.
[9] PAPA M, SRINIVASAN V, GOLDSTEIN R J. Film cooling effect of rotor-stator purge flow on endwall heat/mass transfer [J]. Journal of Turbomachinery, 2012, 134(4): 41014.
[10] FRIEDRICHS S, HODSON H P, DAWES W N. Distribution of film-cooling effectiveness on a turbine endwall measured using the ammonia and diazo technique [J]. Journal of Turbomachinery, 1996, 118(4): 613-621.
[11] FRIEDRICHS S, HODSON H P, DAWES W N. Aerodynamic aspects of endwall film-cooling [J]. Journal of Turbomachinery, 1997, 119(4): 786-793.
[12] ZHANG L J, MOON H K. Turbine nozzle endwall inlet film cooling the effect of a backward facing step [C]∥ Turbo Expo 2003: Collocated with the International Joint Power Generation Conference. New York, USA: ASME, 2003: 203.
[13] LI Z, LIU L, LI J, et al. Effects of upstream step geometry on axisymmetric converging vane endwall secondary flow and heat transfer at transonic conditions [J].Journal of Turbomachinery, 2020, 110(12): 121008.
[14] LUEHR L, SIBOLD R, MAO S, et al. The effect of step misalignment on purge flow cooling of nozzle guide vane at transonic conditions [C]∥Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. New York, USA: ASME, 2019: 17-21.

备注/Memo

备注/Memo:
收稿日期: 2019-11-16。作者简介: 白波(1995—),男,博士生; 李志刚(通信作者),男,副教授,博士生导师。基金项目: 国家自然科学基金资助项目(51776152)。
更新日期/Last Update: 2020-05-10