[1]王德祥,葛培琪,毕文波,等.磨削弧区热源分布形状研究[J].西安交通大学学报,2015,49(08):116-121.[doi:10.7652/xjtuxb201508019]
 WANG Dexiang,GE Peiqi,BI Wenbo,et al.Heat Source Profile in Grinding Zone[J].Journal of Xi'an Jiaotong University,2015,49(08):116-121.[doi:10.7652/xjtuxb201508019]
点击复制

磨削弧区热源分布形状研究
分享到:

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
49
期数:
2015年第08期
页码:
116-121
栏目:
出版日期:
2015-08-10

文章信息/Info

Title:
Heat Source Profile in Grinding Zone
文章编号:
253-987X(2015)08-0116-06
作者:
王德祥1葛培琪12毕文波1郑传栋1
1.山东大学机械工程学院,250061,济南;2.山东大学高效洁净机械制造教育部重点实验室,250061,济南
Author(s):
WANG Dexiang1GE Peiqi12BI Wenbo1ZHENG Chuandong1
1. School of Mechanical Engineering, Shandong University, Jinan 250061, China; 2. Key Laboratory of HighEfficiency and Clean Mechanical Manufacture at Shandong University, Ministry of Education, Jinan 250061, China
关键词:
热源分布热源形状热量分配比磨削温度场
Keywords:
heat source distribution heat source profile heat partition ratio grinding temperature field
分类号:
TG580.1
DOI:
10.7652/xjtuxb201508019
文献标志码:
A
摘要:
为了研究磨削力与磨削热耦合作用的残余应力场,基于磨粒轨迹分析和磨粒接触分析,采用概率统计的方法建立了磨削弧区热源分布模型。模型分析了磨削弧区热量分配关系,不需预先假设沿磨削弧总热源分布形状及热量分配比一致,即可获得磨削弧区热源分布形状,解决了以往热源分布形状常被假设为矩形和直角三角形,但矩形热源和直角三角形热源并不能准确地描述热源分布形状的问题。采用有限元法仿真分析了工件磨削温度场,采用热成像仪实测了磨削温度场,并将磨削温度场有限元仿真结果和热成像仪测量结果进行了对比分析,结果表明:有限元模拟结果与热成像仪测量结果具有很好的一致性,磨削弧区最高温度预测值与实测值之间的误差在2.24%~15.3%范围内;直角三角形热源并不能准确地描述磨削弧区热源分布形状;磨削弧区热源分布形状更接近四次多项式函数曲线。
Abstract:
A heat source distribution model in grinding zone is established with probability statistical method to reveal the residual stress field induced by the coupling of grinding force and grinding heat following grain trajectory analysis and grain contact analysis. Heat partition analysis in grinding zone is performed in the modeling of heat source distribution. Heat source profile was always assumed to be rectangular or triangular in the previous studies, however rectangular or triangular heat source can not describe the heat source profile accurately. On the assumption of uniform heat partition ratio in grinding zone and without providing profile of total heat source in advance, the heat source distribution model enables to obtain the heat source profile in grinding zone. Finite element method is used to simulate grinding temperature field. An infrared thermal imager is used to measure grinding temperature field. A comparison indicates that the simulations coincide well with the measurements of grinding temperature field, and the errors of the maximum temperature in grinding zone range from 2.24% to 15.3%. The heat source distribution in grinding zone approaches the profile of quartic polynomial curve.

参考文献/References:

[1]MALKIN S, GUO C. Thermal analysis of grinding [J]. CIRP Annals: Manufacturing Technology, 2007, 56(2): 760782.
[2]张磊. 单程平面磨削淬硬技术的理论分析和试验研究 [D]. 济南: 山东大学, 2006.
[3]GUO C, WU Y, VARGHESE V, et al. Temperatures and energy partition for grinding with vitrified CBN wheels [J]. CIRP Annals: Manufacturing Technology, 1999, 48(1): 247250.
[4]ROWE W B, BLACK S C E, MILLS B, et al. Experimental investigation of heat transfer in grinding [J]. CIRP Annals: Manufacturing Technology, 1995, 44(1): 329332.
[5]ZHANG L, MAHDI M. Applied mechanics in grinding: IV The mechanism of grinding induced phase transformation [J]. International Journal of Machine Tools and Manufacture, 1995, 35(10): 13971409.
[6]LI B, ZHU D, PANG J, et al. Quadratic curve heat flux distribution model in the grinding zone [J]. The International Journal of Advanced Manufacturing Technology, 2011, 54(9/10/11/12): 931940.
[7]毛聪. 平面磨削温度场及热损伤的研究 [D]. 长沙: 湖南大学, 2008.
[8]SHAH S M, NELIAS D, ZAINULABDEIN M, et al. Numerical simulation of grinding induced phase transformation and residual stresses in AISI52100 steel [J]. Finite Elements in Analysis and Design, 2012, 61: 111.
[9]GUO C, MALKIN S. Inverse heat transfer analysis of grinding: part 1Methods [J]. Journal of Manufacturing Science and Engineering, 1996, 118(1): 137142.
[10]GUO C, MALKIN S. Inverse heat transfer analysis of grinding: part 2Applications [J]. Journal of Manufacturing Science and Engineering, 1996, 118(1): 143149.
[11]HONG K K, LO C Y. An inverse analysis for the heat conduction during a grinding process [J]. Journal of Materials Processing Technology, 2000, 105(1): 8794.
[12]KIM H J, KIM N K, KWAK J S. Heat flux distribution model by sequential algorithm of inverse heat transfer for determining workpiece temperature in creep feed grinding [J]. International Journal of Machine Tools and Manufacture, 2006, 46(15): 20862093.
[13]BROSSE A, NAISSON P, HAMDI H, et al. Temperature measurement and heat flux characterization in grinding using thermography [J]. Journal of Materials Processing Technology, 2008, 201(1): 590595.
[14]ROWE W B, MORGAN M N, QI H S, et al. The effect of deformation on the contact area in grinding [J]. CIRP Annals: Manufacturing Technology, 1993, 42(1): 409412.
[15]WANG D, GE P, BI W, et al. Grain trajectory and grain workpiece contact analyses for modeling of grinding force and energy partition [J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(9/10/11/12): 21112123.
[16]ROWE W B. Thermal analysis of high efficiency deep grinding [J]. International Journal of Machine Tools and Manufacture, 2001, 41(1): 119.
[17]HADAD M, SADEGHI B. Thermal analysis of minimum quantity lubricationMQL grinding process [J]. International Journal of Machine Tools and Manufacture, 2012, 63: 115.
[18]JU Y, FARRIS T N, CHANDRASEKAR S. Theoretical analysis of heat partition and temperatures in grinding [J]. Journal of Tribology, 1998, 120(4): 789794.
[19]SHAH S M A. Prediction of residual stresses due to grinding with phase transformation [D]. Lyon, France: INSA de Lyon, 2011.

相似文献/References:

[1]王德祥,孙树峰,颜丙亮,等.已加工表面热源模型研究及磨削温度场数值模拟[J].西安交通大学学报,2018,52(04):084.[doi:10.7652/xjtuxb201804012]
 WANG Dexiang,SUN Shufeng,YAN Bingliang,et al.Modeling of Heat Source on Machined Surface and Numerical Simulation for Grinding Temperature Field[J].Journal of Xi'an Jiaotong University,2018,52(08):084.[doi:10.7652/xjtuxb201804012]

备注/Memo

备注/Memo:
国家“973计划”资助项目(2011CB706600)
更新日期/Last Update: